IDNLearn.com connects you with a community of knowledgeable individuals ready to help. Explore a wide array of topics and find reliable answers from our experienced community members.
Sagot :
Certainly! Let's solve this problem step by step to calculate the rotational kinetic energy of the motorcycle wheel, starting with the moment of inertia.
### Step 1: Calculation of the Average Radius
Given the two radii [tex]\(R_1 = 0.290 \, \text{m}\)[/tex] and [tex]\(R_2 = 0.320 \, \text{m}\)[/tex]:
[tex]\[ \text{Average Radius} = \frac{R_1 + R_2}{2} = \frac{0.290 + 0.320}{2} = 0.305 \, \text{m} \][/tex]
### Step 2: Calculation of the Moment of Inertia [tex]\(I\)[/tex]
The moment of inertia for the wheel (assuming it can be approximated by a thin hoop of radius [tex]\( \text{Average Radius} \)[/tex] and mass [tex]\( m \)[/tex]) is given by:
[tex]\[ I = m \times (\text{Average Radius})^2 \][/tex]
Given the mass [tex]\( m = 12.5 \, \text{kg} \)[/tex]:
[tex]\[ I = 12.5 \times (0.305)^2 \][/tex]
To four significant figures, the moment of inertia is:
[tex]\[ I = 12.5 \times 0.093025 = 1.1628125 \approx 1.1628 \, \text{kg} \cdot \text{m}^2 \][/tex]
### Step 3: Calculation of the Rotational Kinetic Energy [tex]\( KE_{\text{rot}} \)[/tex]
The formula for the rotational kinetic energy is:
[tex]\[ KE_{\text{rot}} = \frac{1}{2} I \omega^2 \][/tex]
where [tex]\( \omega \)[/tex] is the angular velocity.
Given [tex]\( \omega = 120 \, \text{rad/s} \)[/tex] and [tex]\( I = 1.1628 \, \text{kg} \cdot \text{m}^2 \)[/tex]:
[tex]\[ KE_{\text{rot}} = \frac{1}{2} \times 1.1628 \times (120)^2 \][/tex]
Carrying out the calculation:
[tex]\[ KE_{\text{rot}} = 0.5 \times 1.1628 \times 14400 = 8371.68 \][/tex]
To one decimal place, the rotational kinetic energy is:
[tex]\[ KE_{\text{rot}} \approx 8372.2 \, \text{Joules} \][/tex]
### Final Answer:
- Moment of inertia, [tex]\( I \approx 1.1628 \, \text{kg} \cdot \text{m}^2 \)[/tex]
- Rotational kinetic energy, [tex]\( KE_{\text{rot}} \approx 8372.2 \, \text{J} \)[/tex]
So the filled blanks are:
Moment of inertia for the wheel:
[tex]\[ I = 1.1628 \, \text{kg} \cdot \text{m}^2 \][/tex]
Rotational kinetic energy:
[tex]\[ KE_{\text{rot}} = 8372.2 \, \text{Joules} \][/tex]
### Step 1: Calculation of the Average Radius
Given the two radii [tex]\(R_1 = 0.290 \, \text{m}\)[/tex] and [tex]\(R_2 = 0.320 \, \text{m}\)[/tex]:
[tex]\[ \text{Average Radius} = \frac{R_1 + R_2}{2} = \frac{0.290 + 0.320}{2} = 0.305 \, \text{m} \][/tex]
### Step 2: Calculation of the Moment of Inertia [tex]\(I\)[/tex]
The moment of inertia for the wheel (assuming it can be approximated by a thin hoop of radius [tex]\( \text{Average Radius} \)[/tex] and mass [tex]\( m \)[/tex]) is given by:
[tex]\[ I = m \times (\text{Average Radius})^2 \][/tex]
Given the mass [tex]\( m = 12.5 \, \text{kg} \)[/tex]:
[tex]\[ I = 12.5 \times (0.305)^2 \][/tex]
To four significant figures, the moment of inertia is:
[tex]\[ I = 12.5 \times 0.093025 = 1.1628125 \approx 1.1628 \, \text{kg} \cdot \text{m}^2 \][/tex]
### Step 3: Calculation of the Rotational Kinetic Energy [tex]\( KE_{\text{rot}} \)[/tex]
The formula for the rotational kinetic energy is:
[tex]\[ KE_{\text{rot}} = \frac{1}{2} I \omega^2 \][/tex]
where [tex]\( \omega \)[/tex] is the angular velocity.
Given [tex]\( \omega = 120 \, \text{rad/s} \)[/tex] and [tex]\( I = 1.1628 \, \text{kg} \cdot \text{m}^2 \)[/tex]:
[tex]\[ KE_{\text{rot}} = \frac{1}{2} \times 1.1628 \times (120)^2 \][/tex]
Carrying out the calculation:
[tex]\[ KE_{\text{rot}} = 0.5 \times 1.1628 \times 14400 = 8371.68 \][/tex]
To one decimal place, the rotational kinetic energy is:
[tex]\[ KE_{\text{rot}} \approx 8372.2 \, \text{Joules} \][/tex]
### Final Answer:
- Moment of inertia, [tex]\( I \approx 1.1628 \, \text{kg} \cdot \text{m}^2 \)[/tex]
- Rotational kinetic energy, [tex]\( KE_{\text{rot}} \approx 8372.2 \, \text{J} \)[/tex]
So the filled blanks are:
Moment of inertia for the wheel:
[tex]\[ I = 1.1628 \, \text{kg} \cdot \text{m}^2 \][/tex]
Rotational kinetic energy:
[tex]\[ KE_{\text{rot}} = 8372.2 \, \text{Joules} \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.