Join IDNLearn.com and become part of a knowledge-sharing community that thrives on curiosity. Ask any question and receive accurate, in-depth responses from our dedicated team of experts.
Sagot :
Certainly! Let's work through the problem step-by-step.
We are asked to find the coordinates of the point [tex]\( P \)[/tex] that is located [tex]\(\frac{5}{6}\)[/tex] of the distance along the line segment from point [tex]\( R \)[/tex] to point [tex]\( Q \)[/tex].
Given:
- Coordinates of point [tex]\( R \)[/tex] are [tex]\( R(0, 0) \)[/tex].
- Coordinates of point [tex]\( Q \)[/tex] are [tex]\( Q(6, 12) \)[/tex].
To find the coordinates of point [tex]\( P \)[/tex], which lies [tex]\(\frac{5}{6}\)[/tex] of the way from [tex]\( R \)[/tex] to [tex]\( Q \)[/tex], we can use the section formula. The section formula for internal division of a line segment [tex]\( AB \)[/tex] in the ratio [tex]\( m:n \)[/tex] is given by:
[tex]\[ \left( x_P, y_P \right) = \left( \frac{m x_B + n x_A}{m+n}, \frac{m y B + n y_A}{m+n} \right) \][/tex]
In our problem, point [tex]\( P \)[/tex] divides [tex]\( RQ \)[/tex] in the ratio [tex]\( 5:1 \)[/tex] since [tex]\(\frac{5}{6}\)[/tex] implies that for every 5 parts of the total 6 parts of the distance, [tex]\( P \)[/tex] is at the 5th part.
Thus, the formula simplifies:
[tex]\[ \left( x_P, y_P \right) = \left( R_x + \frac{5}{6} (Q_x - R_x), R_y + \frac{5}{6} (Q_y - R_y) \right) \][/tex]
Now plug in the coordinates of [tex]\( R \)[/tex] and [tex]\( Q \)[/tex]:
[tex]\[ x_P = 0 + \frac{5}{6} (6 - 0) \][/tex]
[tex]\[ x_P = 0 + \frac{5}{6} \times 6 \][/tex]
[tex]\[ x_P = 5 \][/tex]
For [tex]\( y_P \)[/tex]:
[tex]\[ y_P = 0 + \frac{5}{6} (12 - 0) \][/tex]
[tex]\[ y_P = 0 + \frac{5}{6} \times 12 \][/tex]
[tex]\[ y_P = 10 \][/tex]
Thus, the coordinates of point [tex]\( P \)[/tex] are:
[tex]\[ (5.0, 10.0) \][/tex]
Rounding to the nearest tenth, the coordinates remain [tex]\( (5.0, 10.0) \)[/tex].
So, the coordinates of point [tex]\( P \)[/tex] are [tex]\( \boxed{(5.0, 10.0)} \)[/tex].
We are asked to find the coordinates of the point [tex]\( P \)[/tex] that is located [tex]\(\frac{5}{6}\)[/tex] of the distance along the line segment from point [tex]\( R \)[/tex] to point [tex]\( Q \)[/tex].
Given:
- Coordinates of point [tex]\( R \)[/tex] are [tex]\( R(0, 0) \)[/tex].
- Coordinates of point [tex]\( Q \)[/tex] are [tex]\( Q(6, 12) \)[/tex].
To find the coordinates of point [tex]\( P \)[/tex], which lies [tex]\(\frac{5}{6}\)[/tex] of the way from [tex]\( R \)[/tex] to [tex]\( Q \)[/tex], we can use the section formula. The section formula for internal division of a line segment [tex]\( AB \)[/tex] in the ratio [tex]\( m:n \)[/tex] is given by:
[tex]\[ \left( x_P, y_P \right) = \left( \frac{m x_B + n x_A}{m+n}, \frac{m y B + n y_A}{m+n} \right) \][/tex]
In our problem, point [tex]\( P \)[/tex] divides [tex]\( RQ \)[/tex] in the ratio [tex]\( 5:1 \)[/tex] since [tex]\(\frac{5}{6}\)[/tex] implies that for every 5 parts of the total 6 parts of the distance, [tex]\( P \)[/tex] is at the 5th part.
Thus, the formula simplifies:
[tex]\[ \left( x_P, y_P \right) = \left( R_x + \frac{5}{6} (Q_x - R_x), R_y + \frac{5}{6} (Q_y - R_y) \right) \][/tex]
Now plug in the coordinates of [tex]\( R \)[/tex] and [tex]\( Q \)[/tex]:
[tex]\[ x_P = 0 + \frac{5}{6} (6 - 0) \][/tex]
[tex]\[ x_P = 0 + \frac{5}{6} \times 6 \][/tex]
[tex]\[ x_P = 5 \][/tex]
For [tex]\( y_P \)[/tex]:
[tex]\[ y_P = 0 + \frac{5}{6} (12 - 0) \][/tex]
[tex]\[ y_P = 0 + \frac{5}{6} \times 12 \][/tex]
[tex]\[ y_P = 10 \][/tex]
Thus, the coordinates of point [tex]\( P \)[/tex] are:
[tex]\[ (5.0, 10.0) \][/tex]
Rounding to the nearest tenth, the coordinates remain [tex]\( (5.0, 10.0) \)[/tex].
So, the coordinates of point [tex]\( P \)[/tex] are [tex]\( \boxed{(5.0, 10.0)} \)[/tex].
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.