Get comprehensive answers to your questions with the help of IDNLearn.com's community. Our platform provides detailed and accurate responses from experts, helping you navigate any topic with confidence.

What are the coordinates of point [tex]P[/tex] on the directed line segment from [tex]R[/tex] to [tex]Q[/tex] such that [tex]P[/tex] is [tex]\frac{5}{6}[/tex] the length of the line segment from [tex]R[/tex] to [tex]Q[/tex]? Round to the nearest tenth if necessary.

[tex]( \square, \ \square )[/tex]


Sagot :

Certainly! Let's work through the problem step-by-step.

We are asked to find the coordinates of the point [tex]\( P \)[/tex] that is located [tex]\(\frac{5}{6}\)[/tex] of the distance along the line segment from point [tex]\( R \)[/tex] to point [tex]\( Q \)[/tex].

Given:
- Coordinates of point [tex]\( R \)[/tex] are [tex]\( R(0, 0) \)[/tex].
- Coordinates of point [tex]\( Q \)[/tex] are [tex]\( Q(6, 12) \)[/tex].

To find the coordinates of point [tex]\( P \)[/tex], which lies [tex]\(\frac{5}{6}\)[/tex] of the way from [tex]\( R \)[/tex] to [tex]\( Q \)[/tex], we can use the section formula. The section formula for internal division of a line segment [tex]\( AB \)[/tex] in the ratio [tex]\( m:n \)[/tex] is given by:

[tex]\[ \left( x_P, y_P \right) = \left( \frac{m x_B + n x_A}{m+n}, \frac{m y B + n y_A}{m+n} \right) \][/tex]

In our problem, point [tex]\( P \)[/tex] divides [tex]\( RQ \)[/tex] in the ratio [tex]\( 5:1 \)[/tex] since [tex]\(\frac{5}{6}\)[/tex] implies that for every 5 parts of the total 6 parts of the distance, [tex]\( P \)[/tex] is at the 5th part.

Thus, the formula simplifies:

[tex]\[ \left( x_P, y_P \right) = \left( R_x + \frac{5}{6} (Q_x - R_x), R_y + \frac{5}{6} (Q_y - R_y) \right) \][/tex]

Now plug in the coordinates of [tex]\( R \)[/tex] and [tex]\( Q \)[/tex]:

[tex]\[ x_P = 0 + \frac{5}{6} (6 - 0) \][/tex]
[tex]\[ x_P = 0 + \frac{5}{6} \times 6 \][/tex]
[tex]\[ x_P = 5 \][/tex]

For [tex]\( y_P \)[/tex]:

[tex]\[ y_P = 0 + \frac{5}{6} (12 - 0) \][/tex]
[tex]\[ y_P = 0 + \frac{5}{6} \times 12 \][/tex]
[tex]\[ y_P = 10 \][/tex]

Thus, the coordinates of point [tex]\( P \)[/tex] are:

[tex]\[ (5.0, 10.0) \][/tex]

Rounding to the nearest tenth, the coordinates remain [tex]\( (5.0, 10.0) \)[/tex].

So, the coordinates of point [tex]\( P \)[/tex] are [tex]\( \boxed{(5.0, 10.0)} \)[/tex].