IDNLearn.com is your go-to platform for finding reliable answers quickly. Join our platform to receive prompt and accurate responses from experienced professionals in various fields.
Sagot :
Sure! Let's delve into a step-by-step solution for each of the selected questions in Section B.
### a) Prove that [tex]\(\operatorname{cosec}^{-1} x = \sin^{-1} \frac{1}{x}\)[/tex]
To prove this identity, we start from the definitions of the inverse functions.
[tex]\[ y = \operatorname{cosec}^{-1} x \][/tex]
By the definition of the cosecant inverse function, this implies:
[tex]\[ \cosec y = x \quad \text{(1)} \][/tex]
We know that [tex]\(\cosec y = \frac{1}{\sin y}\)[/tex], so:
[tex]\[ \frac{1}{\sin y} = x \][/tex]
Taking the reciprocal on both sides, we get:
[tex]\[ \sin y = \frac{1}{x} \quad \text{(2)} \][/tex]
By the definition of the sine inverse function, equation (2) can be rewritten as:
[tex]\[ y = \sin^{-1} \left(\frac{1}{x}\right) \][/tex]
Substituting [tex]\(y\)[/tex] back into our original equation, we obtain:
[tex]\[ \operatorname{cosec}^{-1} x = \sin^{-1} \left(\frac{1}{x}\right) \][/tex]
### b) State De Moivre's Theorem.
De Moivre's Theorem is a fundamental theorem in complex analysis and trigonometry. It states:
[tex]\[ \left(\cos \theta + i \sin \theta\right)^n = \cos(n\theta) + i \sin(n\theta) \][/tex]
for any real number [tex]\( \theta \)[/tex] and any integer [tex]\( n \)[/tex].
### c) Prove that [tex]\(\sin^2 \theta + \cos^2 \theta = 1\)[/tex].
This is a well-known trigonometric identity that comes from the Pythagorean theorem. For any angle [tex]\(\theta\)[/tex],
Consider a right-angled triangle with hypotenuse of 1 (unit circle). By the Pythagorean theorem:
[tex]\[ \text{Adjacent side}^2 + \text{Opposite side}^2 = \text{Hypotenuse}^2 \][/tex]
Let the adjacent side (x-coordinate) be [tex]\(\cos \theta\)[/tex] and the opposite side (y-coordinate) be [tex]\(\sin \theta\)[/tex]. Therefore,
[tex]\[ (\cos \theta)^2 + (\sin \theta)^2 = 1^2 \][/tex]
This simplifies to:
[tex]\[ \cos^2 \theta + \sin^2 \theta = 1 \][/tex]
### d) Find the [tex]\(20^{\text{th}}\)[/tex] and [tex]\(n^{\text{th}}\)[/tex] term of the G.P. [tex]\(2, 4, 8, 16, 32, \ldots\)[/tex].
In a geometric progression (G.P.), the [tex]\(n\)[/tex]-th term is given by:
[tex]\[ a_n = a \cdot r^{n-1} \][/tex]
where [tex]\(a\)[/tex] is the first term and [tex]\(r\)[/tex] is the common ratio.
For the given sequence:
- First term ([tex]\(a\)[/tex]) = 2
- Common ratio ([tex]\(r\)[/tex]) = 4 / 2 = 2
For the [tex]\(20^{\text{th}}\)[/tex] term ([tex]\(a_{20}\)[/tex]):
[tex]\[ a_{20} = 2 \cdot 2^{20-1} = 2 \cdot 2^{19} = 2 \cdot 524288 = 1048576 \][/tex]
For the general [tex]\(n\)[/tex]-th term ([tex]\(a_n\)[/tex]):
[tex]\[ a_n = 2 \cdot 2^{n-1} = 2^n \][/tex]
### e) Insert two numbers between 3 and 81 so that the resulting sequence is a G.P.
Let the numbers to be inserted be [tex]\(a_2\)[/tex] and [tex]\(a_3\)[/tex], forming a sequence: [tex]\(3, a_2, a_3, 81\)[/tex].
In a G.P., the ratio [tex]\(r\)[/tex] between successive terms is constant:
[tex]\[ r = \frac{a_2}{3} = \frac{a_3}{a_2} = \frac{81}{a_3} \][/tex]
We solve for [tex]\(r\)[/tex]:
[tex]\[ a_2 = 3r \quad \text{and} \quad a_3 = 3r^2 \][/tex]
Using [tex]\(a_3\)[/tex]:
[tex]\[ 3r^2 = 81 \implies r^2 = 27 \implies r = \sqrt{27} = 3\sqrt{3} \][/tex]
Now, substituting [tex]\(r\)[/tex]:
[tex]\[ a_2 = 3 \cdot 3\sqrt{3} = 9\sqrt{3} \][/tex]
[tex]\[ a_3 = 3 \cdot (3\sqrt{3})^2 = 3 \cdot 27 = 81 \][/tex]
Thus, the numbers are [tex]\(9\sqrt{3}\)[/tex] and it self-raised term [tex]\(3(3\sqrt{3}) = 81\)[/tex].
### f) Find the value of [tex]\({}^{13}C_2\)[/tex].
The binomial coefficient, [tex]\({}^{n}C_r\)[/tex], is calculated as:
[tex]\[ {}^{n}C_r = \frac{n!}{r!(n-r)!} \][/tex]
For [tex]\({}^{13}C_2\)[/tex]:
[tex]\[ {}^{13}C_2 = \frac{13!}{2!(13-2)!} = \frac{13!}{2! \cdot 11!} \][/tex]
Simplifying the factorials:
[tex]\[ \frac{13 \cdot 12 \cdot 11!}{2 \cdot 1 \cdot 11!} = \frac{13 \cdot 12}{2 \cdot 1} = \frac{156}{2} = 78 \][/tex]
Thus, [tex]\({}^{13}C_2 = 78\)[/tex].
These detailed steps should help in understanding each specific part of the math problems provided!
### a) Prove that [tex]\(\operatorname{cosec}^{-1} x = \sin^{-1} \frac{1}{x}\)[/tex]
To prove this identity, we start from the definitions of the inverse functions.
[tex]\[ y = \operatorname{cosec}^{-1} x \][/tex]
By the definition of the cosecant inverse function, this implies:
[tex]\[ \cosec y = x \quad \text{(1)} \][/tex]
We know that [tex]\(\cosec y = \frac{1}{\sin y}\)[/tex], so:
[tex]\[ \frac{1}{\sin y} = x \][/tex]
Taking the reciprocal on both sides, we get:
[tex]\[ \sin y = \frac{1}{x} \quad \text{(2)} \][/tex]
By the definition of the sine inverse function, equation (2) can be rewritten as:
[tex]\[ y = \sin^{-1} \left(\frac{1}{x}\right) \][/tex]
Substituting [tex]\(y\)[/tex] back into our original equation, we obtain:
[tex]\[ \operatorname{cosec}^{-1} x = \sin^{-1} \left(\frac{1}{x}\right) \][/tex]
### b) State De Moivre's Theorem.
De Moivre's Theorem is a fundamental theorem in complex analysis and trigonometry. It states:
[tex]\[ \left(\cos \theta + i \sin \theta\right)^n = \cos(n\theta) + i \sin(n\theta) \][/tex]
for any real number [tex]\( \theta \)[/tex] and any integer [tex]\( n \)[/tex].
### c) Prove that [tex]\(\sin^2 \theta + \cos^2 \theta = 1\)[/tex].
This is a well-known trigonometric identity that comes from the Pythagorean theorem. For any angle [tex]\(\theta\)[/tex],
Consider a right-angled triangle with hypotenuse of 1 (unit circle). By the Pythagorean theorem:
[tex]\[ \text{Adjacent side}^2 + \text{Opposite side}^2 = \text{Hypotenuse}^2 \][/tex]
Let the adjacent side (x-coordinate) be [tex]\(\cos \theta\)[/tex] and the opposite side (y-coordinate) be [tex]\(\sin \theta\)[/tex]. Therefore,
[tex]\[ (\cos \theta)^2 + (\sin \theta)^2 = 1^2 \][/tex]
This simplifies to:
[tex]\[ \cos^2 \theta + \sin^2 \theta = 1 \][/tex]
### d) Find the [tex]\(20^{\text{th}}\)[/tex] and [tex]\(n^{\text{th}}\)[/tex] term of the G.P. [tex]\(2, 4, 8, 16, 32, \ldots\)[/tex].
In a geometric progression (G.P.), the [tex]\(n\)[/tex]-th term is given by:
[tex]\[ a_n = a \cdot r^{n-1} \][/tex]
where [tex]\(a\)[/tex] is the first term and [tex]\(r\)[/tex] is the common ratio.
For the given sequence:
- First term ([tex]\(a\)[/tex]) = 2
- Common ratio ([tex]\(r\)[/tex]) = 4 / 2 = 2
For the [tex]\(20^{\text{th}}\)[/tex] term ([tex]\(a_{20}\)[/tex]):
[tex]\[ a_{20} = 2 \cdot 2^{20-1} = 2 \cdot 2^{19} = 2 \cdot 524288 = 1048576 \][/tex]
For the general [tex]\(n\)[/tex]-th term ([tex]\(a_n\)[/tex]):
[tex]\[ a_n = 2 \cdot 2^{n-1} = 2^n \][/tex]
### e) Insert two numbers between 3 and 81 so that the resulting sequence is a G.P.
Let the numbers to be inserted be [tex]\(a_2\)[/tex] and [tex]\(a_3\)[/tex], forming a sequence: [tex]\(3, a_2, a_3, 81\)[/tex].
In a G.P., the ratio [tex]\(r\)[/tex] between successive terms is constant:
[tex]\[ r = \frac{a_2}{3} = \frac{a_3}{a_2} = \frac{81}{a_3} \][/tex]
We solve for [tex]\(r\)[/tex]:
[tex]\[ a_2 = 3r \quad \text{and} \quad a_3 = 3r^2 \][/tex]
Using [tex]\(a_3\)[/tex]:
[tex]\[ 3r^2 = 81 \implies r^2 = 27 \implies r = \sqrt{27} = 3\sqrt{3} \][/tex]
Now, substituting [tex]\(r\)[/tex]:
[tex]\[ a_2 = 3 \cdot 3\sqrt{3} = 9\sqrt{3} \][/tex]
[tex]\[ a_3 = 3 \cdot (3\sqrt{3})^2 = 3 \cdot 27 = 81 \][/tex]
Thus, the numbers are [tex]\(9\sqrt{3}\)[/tex] and it self-raised term [tex]\(3(3\sqrt{3}) = 81\)[/tex].
### f) Find the value of [tex]\({}^{13}C_2\)[/tex].
The binomial coefficient, [tex]\({}^{n}C_r\)[/tex], is calculated as:
[tex]\[ {}^{n}C_r = \frac{n!}{r!(n-r)!} \][/tex]
For [tex]\({}^{13}C_2\)[/tex]:
[tex]\[ {}^{13}C_2 = \frac{13!}{2!(13-2)!} = \frac{13!}{2! \cdot 11!} \][/tex]
Simplifying the factorials:
[tex]\[ \frac{13 \cdot 12 \cdot 11!}{2 \cdot 1 \cdot 11!} = \frac{13 \cdot 12}{2 \cdot 1} = \frac{156}{2} = 78 \][/tex]
Thus, [tex]\({}^{13}C_2 = 78\)[/tex].
These detailed steps should help in understanding each specific part of the math problems provided!
Thank you for participating in our discussion. We value every contribution. Keep sharing knowledge and helping others find the answers they need. Let's create a dynamic and informative learning environment together. For dependable and accurate answers, visit IDNLearn.com. Thanks for visiting, and see you next time for more helpful information.