Find expert answers and community insights on IDNLearn.com. Get the information you need from our community of experts who provide accurate and thorough answers to all your questions.
Sagot :
Let us start by considering the quadratic equation given: [tex]\(4x^2 - 6x + 3 = 0\)[/tex]. We are told that [tex]\( \alpha \)[/tex] and [tex]\( \beta \)[/tex] are the roots of this equation.
The roots of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] can be found using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For the equation [tex]\(4x^2 - 6x + 3 = 0\)[/tex], the coefficients are [tex]\(a = 4\)[/tex], [tex]\(b = -6\)[/tex], and [tex]\(c = 3\)[/tex]. Plugging these values into the quadratic formula, we will get:
[tex]\[ \alpha, \beta = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 4 \cdot 3}}{2 \cdot 4} \][/tex]
[tex]\[ = \frac{6 \pm \sqrt{36 - 48}}{8} \][/tex]
[tex]\[ = \frac{6 \pm \sqrt{-12}}{8} \][/tex]
Since the discriminant [tex]\((36 - 48 = -12)\)[/tex] is negative, the roots will be complex. Let’s express [tex]\(\sqrt{-12}\)[/tex] as [tex]\(2i\sqrt{3}\)[/tex]:
[tex]\[ \alpha, \beta = \frac{6 \pm 2i\sqrt{3}}{8} \][/tex]
[tex]\[ = \frac{3 \pm i\sqrt{3}}{4} \][/tex]
So:
[tex]\[ \alpha = \frac{3 + i\sqrt{3}}{4} \][/tex]
[tex]\[ \beta = \frac{3 - i\sqrt{3}}{4} \][/tex]
Next, we need to find the value of [tex]\(\frac{1}{\alpha^2} + \frac{1}{\beta^2}\)[/tex]. Start by squaring [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]:
[tex]\[ \alpha^2 = \left(\frac{3 + i\sqrt{3}}{4}\right)^2 = \frac{(3 + i\sqrt{3})^2}{16} = \frac{9 + 6i\sqrt{3} - 3}{16} = \frac{6 + 6i\sqrt{3}}{16} = \frac{3 + 3i\sqrt{3}}{8} \][/tex]
[tex]\[ \beta^2 = \left(\frac{3 - i\sqrt{3}}{4}\right)^2 = \frac{(3 - i\sqrt{3})^2}{16} = \frac{9 - 6i\sqrt{3} - 3}{16} = \frac{6 - 6i\sqrt{3}}{16} = \frac{3 - 3i\sqrt{3}}{8} \][/tex]
To find [tex]\(\frac{1}{\alpha^2} + \frac{1}{\beta^2}\)[/tex]:
[tex]\[ \frac{1}{\alpha^2} = \frac{8}{3 + 3i\sqrt{3}}, \quad \frac{1}{\beta^2} = \frac{8}{3 - 3i\sqrt{3}} \][/tex]
Multiplying numerator and denominator by the conjugate for each term:
[tex]\[ \frac{1}{\alpha^2} = \frac{8}{3 + 3i\sqrt{3}} \times \frac{3 - 3i\sqrt{3}}{3 - 3i\sqrt{3}} = \frac{8(3 - 3i\sqrt{3})}{(3 + 3i\sqrt{3})(3 - 3i\sqrt{3})} = \frac{8(3 - 3i\sqrt{3})}{9 + 27} = \frac{8(3 - 3i\sqrt{3})}{36} = \frac{2 - 2i\sqrt{3}}{9} \][/tex]
Similarly,
[tex]\[ \frac{1}{\beta^2} = \frac{8}{3 - 3i\sqrt{3}} \times \frac{3 + 3i\sqrt{3}}{3 + 3i\sqrt{3}} = \frac{8(3 + 3i\sqrt{3})}{(3 - 3i\sqrt{3})(3 + 3i\sqrt{3})} = \frac{8 \times (3 + 3i\sqrt{3})}{36} = \frac{2 + 2i\sqrt{3}}{9} \][/tex]
Adding these two results:
[tex]\[ \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{2 - 2i\sqrt{3}}{9} + \frac{2 + 2i\sqrt{3}}{9} = \frac{2 - 2i\sqrt{3} + 2 + 2i\sqrt{3}}{9} = \frac{4}{9} = \frac{4}{3} \][/tex]
Therefore, the value of [tex]\(\frac{1}{\alpha^2} + \frac{1}{\beta^2}\)[/tex] is [tex]\(\boxed{\frac{4}{3}}\)[/tex].
The roots of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] can be found using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For the equation [tex]\(4x^2 - 6x + 3 = 0\)[/tex], the coefficients are [tex]\(a = 4\)[/tex], [tex]\(b = -6\)[/tex], and [tex]\(c = 3\)[/tex]. Plugging these values into the quadratic formula, we will get:
[tex]\[ \alpha, \beta = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 4 \cdot 3}}{2 \cdot 4} \][/tex]
[tex]\[ = \frac{6 \pm \sqrt{36 - 48}}{8} \][/tex]
[tex]\[ = \frac{6 \pm \sqrt{-12}}{8} \][/tex]
Since the discriminant [tex]\((36 - 48 = -12)\)[/tex] is negative, the roots will be complex. Let’s express [tex]\(\sqrt{-12}\)[/tex] as [tex]\(2i\sqrt{3}\)[/tex]:
[tex]\[ \alpha, \beta = \frac{6 \pm 2i\sqrt{3}}{8} \][/tex]
[tex]\[ = \frac{3 \pm i\sqrt{3}}{4} \][/tex]
So:
[tex]\[ \alpha = \frac{3 + i\sqrt{3}}{4} \][/tex]
[tex]\[ \beta = \frac{3 - i\sqrt{3}}{4} \][/tex]
Next, we need to find the value of [tex]\(\frac{1}{\alpha^2} + \frac{1}{\beta^2}\)[/tex]. Start by squaring [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]:
[tex]\[ \alpha^2 = \left(\frac{3 + i\sqrt{3}}{4}\right)^2 = \frac{(3 + i\sqrt{3})^2}{16} = \frac{9 + 6i\sqrt{3} - 3}{16} = \frac{6 + 6i\sqrt{3}}{16} = \frac{3 + 3i\sqrt{3}}{8} \][/tex]
[tex]\[ \beta^2 = \left(\frac{3 - i\sqrt{3}}{4}\right)^2 = \frac{(3 - i\sqrt{3})^2}{16} = \frac{9 - 6i\sqrt{3} - 3}{16} = \frac{6 - 6i\sqrt{3}}{16} = \frac{3 - 3i\sqrt{3}}{8} \][/tex]
To find [tex]\(\frac{1}{\alpha^2} + \frac{1}{\beta^2}\)[/tex]:
[tex]\[ \frac{1}{\alpha^2} = \frac{8}{3 + 3i\sqrt{3}}, \quad \frac{1}{\beta^2} = \frac{8}{3 - 3i\sqrt{3}} \][/tex]
Multiplying numerator and denominator by the conjugate for each term:
[tex]\[ \frac{1}{\alpha^2} = \frac{8}{3 + 3i\sqrt{3}} \times \frac{3 - 3i\sqrt{3}}{3 - 3i\sqrt{3}} = \frac{8(3 - 3i\sqrt{3})}{(3 + 3i\sqrt{3})(3 - 3i\sqrt{3})} = \frac{8(3 - 3i\sqrt{3})}{9 + 27} = \frac{8(3 - 3i\sqrt{3})}{36} = \frac{2 - 2i\sqrt{3}}{9} \][/tex]
Similarly,
[tex]\[ \frac{1}{\beta^2} = \frac{8}{3 - 3i\sqrt{3}} \times \frac{3 + 3i\sqrt{3}}{3 + 3i\sqrt{3}} = \frac{8(3 + 3i\sqrt{3})}{(3 - 3i\sqrt{3})(3 + 3i\sqrt{3})} = \frac{8 \times (3 + 3i\sqrt{3})}{36} = \frac{2 + 2i\sqrt{3}}{9} \][/tex]
Adding these two results:
[tex]\[ \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{2 - 2i\sqrt{3}}{9} + \frac{2 + 2i\sqrt{3}}{9} = \frac{2 - 2i\sqrt{3} + 2 + 2i\sqrt{3}}{9} = \frac{4}{9} = \frac{4}{3} \][/tex]
Therefore, the value of [tex]\(\frac{1}{\alpha^2} + \frac{1}{\beta^2}\)[/tex] is [tex]\(\boxed{\frac{4}{3}}\)[/tex].
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com is your reliable source for accurate answers. Thank you for visiting, and we hope to assist you again.