IDNLearn.com: Where your questions are met with thoughtful and precise answers. Our Q&A platform offers reliable and thorough answers to ensure you have the information you need to succeed in any situation.
Sagot :
To solve this problem, we need to follow a systematic approach. We'll start by analyzing the initial state, adding the changes, using the equilibrium expression, and then finding the new equilibrium concentrations.
### Step 1: Initial State at Equilibrium
Initially, we have:
- [tex]\( [A]_0 = 0.20 \)[/tex] mol/L
- [tex]\( [B]_0 = 0.20 \)[/tex] mol/L
- [tex]\( [C]_0 = 0.40 \)[/tex] mol/L
- [tex]\( [D]_0 = 0.40 \)[/tex] mol/L
### Step 2: Adding A and B
We add 0.15 mol of A and 0.15 mol of B to the system:
- New concentration of A: [tex]\( [A]_0 + 0.15 = 0.20 + 0.15 = 0.35 \)[/tex] mol/L
- New concentration of B: [tex]\( [B]_0 + 0.15 = 0.20 + 0.15 = 0.35 \)[/tex] mol/L
Therefore, the concentrations immediately after adding A and B are:
- [tex]\( [A]_i = 0.35 \)[/tex] mol/L
- [tex]\( [B]_i = 0.35 \)[/tex] mol/L
- [tex]\( [C]_i = 0.40 \)[/tex] mol/L
- [tex]\( [D]_i = 0.40 \)[/tex] mol/L
### Step 3: Equilibrium Constant Calculation
The equilibrium constant [tex]\( K \)[/tex] is calculated based on the initial equilibrium concentrations:
[tex]\[ K = \frac{[C]_0[D]_0}{[A]_0[B]_0} = \frac{(0.40 \, \text{mol/L}) (0.40 \, \text{mol/L})}{(0.20 \, \text{mol/L}) (0.20 \, \text{mol/L})} = \frac{0.16}{0.04} = 4 \][/tex]
### Step 4: Setting Up the ICE Table
Now, we use the ICE (Initial, Change, Equilibrium) table to find the changes that occur as the reaction re-establishes equilibrium:
```
A (g) + B (g) <=> C (g) + D (g)
Initial: 0.35 0.35 0.40 0.40
Change: -x -x +x +x
Equilibrium: 0.35-x 0.35-x 0.40+x 0.40+x
```
### Step 5: Applying the Equilibrium Expression
At equilibrium:
[tex]\[ K = \frac{[C][D]}{[A][B]} \][/tex]
[tex]\[ 4 = \frac{(0.40 + x)(0.40 + x)}{(0.35 - x)(0.35 - x)} \][/tex]
### Step 6: Solving the Equilibrium Expression
We need to solve the equation:
[tex]\[ 4 = \frac{(0.40 + x)^2}{(0.35 - x)^2} \][/tex]
Taking the square root of both sides:
[tex]\[ 2 = \frac{0.40 + x}{0.35 - x} \][/tex]
Now, solve for [tex]\( x \)[/tex]:
[tex]\[ 2(0.35 - x) = 0.40 + x \][/tex]
[tex]\[ 0.70 - 2x = 0.40 + x \][/tex]
[tex]\[ 0.70 - 0.40 = 3x \][/tex]
[tex]\[ 0.30 = 3x \][/tex]
[tex]\[ x = \frac{0.30}{3} = 0.10 \][/tex]
### Step 7: New Equilibrium Concentration of A
Using the value of [tex]\( x \)[/tex] to find the new equilibrium concentration of A:
[tex]\[ [A]_{eq} = 0.35 - x = 0.35 - 0.10 = 0.25 \, \text{mol/L} \][/tex]
### Conclusion
Thus, the new equilibrium concentration of [tex]\( A \)[/tex] is:
[tex]\( \boxed{0.25 \, \text{mol/L}} \)[/tex]
So, the correct answer is [tex]\( \text{d.} \)[/tex]
### Step 1: Initial State at Equilibrium
Initially, we have:
- [tex]\( [A]_0 = 0.20 \)[/tex] mol/L
- [tex]\( [B]_0 = 0.20 \)[/tex] mol/L
- [tex]\( [C]_0 = 0.40 \)[/tex] mol/L
- [tex]\( [D]_0 = 0.40 \)[/tex] mol/L
### Step 2: Adding A and B
We add 0.15 mol of A and 0.15 mol of B to the system:
- New concentration of A: [tex]\( [A]_0 + 0.15 = 0.20 + 0.15 = 0.35 \)[/tex] mol/L
- New concentration of B: [tex]\( [B]_0 + 0.15 = 0.20 + 0.15 = 0.35 \)[/tex] mol/L
Therefore, the concentrations immediately after adding A and B are:
- [tex]\( [A]_i = 0.35 \)[/tex] mol/L
- [tex]\( [B]_i = 0.35 \)[/tex] mol/L
- [tex]\( [C]_i = 0.40 \)[/tex] mol/L
- [tex]\( [D]_i = 0.40 \)[/tex] mol/L
### Step 3: Equilibrium Constant Calculation
The equilibrium constant [tex]\( K \)[/tex] is calculated based on the initial equilibrium concentrations:
[tex]\[ K = \frac{[C]_0[D]_0}{[A]_0[B]_0} = \frac{(0.40 \, \text{mol/L}) (0.40 \, \text{mol/L})}{(0.20 \, \text{mol/L}) (0.20 \, \text{mol/L})} = \frac{0.16}{0.04} = 4 \][/tex]
### Step 4: Setting Up the ICE Table
Now, we use the ICE (Initial, Change, Equilibrium) table to find the changes that occur as the reaction re-establishes equilibrium:
```
A (g) + B (g) <=> C (g) + D (g)
Initial: 0.35 0.35 0.40 0.40
Change: -x -x +x +x
Equilibrium: 0.35-x 0.35-x 0.40+x 0.40+x
```
### Step 5: Applying the Equilibrium Expression
At equilibrium:
[tex]\[ K = \frac{[C][D]}{[A][B]} \][/tex]
[tex]\[ 4 = \frac{(0.40 + x)(0.40 + x)}{(0.35 - x)(0.35 - x)} \][/tex]
### Step 6: Solving the Equilibrium Expression
We need to solve the equation:
[tex]\[ 4 = \frac{(0.40 + x)^2}{(0.35 - x)^2} \][/tex]
Taking the square root of both sides:
[tex]\[ 2 = \frac{0.40 + x}{0.35 - x} \][/tex]
Now, solve for [tex]\( x \)[/tex]:
[tex]\[ 2(0.35 - x) = 0.40 + x \][/tex]
[tex]\[ 0.70 - 2x = 0.40 + x \][/tex]
[tex]\[ 0.70 - 0.40 = 3x \][/tex]
[tex]\[ 0.30 = 3x \][/tex]
[tex]\[ x = \frac{0.30}{3} = 0.10 \][/tex]
### Step 7: New Equilibrium Concentration of A
Using the value of [tex]\( x \)[/tex] to find the new equilibrium concentration of A:
[tex]\[ [A]_{eq} = 0.35 - x = 0.35 - 0.10 = 0.25 \, \text{mol/L} \][/tex]
### Conclusion
Thus, the new equilibrium concentration of [tex]\( A \)[/tex] is:
[tex]\( \boxed{0.25 \, \text{mol/L}} \)[/tex]
So, the correct answer is [tex]\( \text{d.} \)[/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.