IDNLearn.com is your reliable source for expert answers and community insights. Our platform offers reliable and detailed answers, ensuring you have the information you need.
Sagot :
Let's solve the problem step-by-step based on the given function [tex]\( f \)[/tex]:
### (a) Finding the Domain of the Function
The domain of a function is the set of all possible values of [tex]\( x \)[/tex] for which the function is defined. For the given function:
[tex]\[ f(x) = \begin{cases} 2x & \text{if } x \neq 0 \\ 3 & \text{if } x = 0 \end{cases} \][/tex]
The function [tex]\( f \)[/tex] is defined for all real numbers [tex]\( x \)[/tex]. There are no restrictions on [tex]\( x \)[/tex] since the function provides values for every possible [tex]\( x \)[/tex], whether [tex]\( x = 0 \)[/tex] or [tex]\( x \neq 0 \)[/tex].
So, the domain of the function [tex]\( f \)[/tex] is:
[tex]\[ \boxed{(-\infty, \infty)} \][/tex]
### (b) Locating the Intercepts
Y-Intercept:
The y-intercept is the point where [tex]\( x = 0 \)[/tex]. Substituting [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ f(0) = 3 \][/tex]
Thus, the y-intercept is:
[tex]\[ \boxed{3} \][/tex]
X-Intercept:
The x-intercept is the point where [tex]\( f(x) = 0 \)[/tex]. For [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ \begin{cases} 2x = 0 & \text{if } x \neq 0 \\ 3 = 0 & \text{if } x = 0 \end{cases} \][/tex]
For [tex]\( x \neq 0 \)[/tex], solving [tex]\( 2x = 0 \)[/tex] gives [tex]\( x = 0 \)[/tex], but at [tex]\( x = 0 \)[/tex], [tex]\( f(x) = 3 \neq 0 \)[/tex]. Therefore, there is no valid [tex]\( x \)[/tex] for which [tex]\( f(x) = 0 \)[/tex].
Thus, there are no x-intercepts:
[tex]\[ \boxed{\text{None}} \][/tex]
### (c) Graphing the Function
To graph the function, we consider the two cases:
1. When [tex]\( x \neq 0 \)[/tex], the graph of [tex]\( f(x) = 2x \)[/tex] is a straight line passing through the origin with a slope of 2.
2. At [tex]\( x = 0 \)[/tex], the function takes the value [tex]\( f(0) = 3 \)[/tex]. This is a point away from the line [tex]\( 2x \)[/tex].
Here's a rough sketch of the graph:
- For [tex]\( x \neq 0 \)[/tex], the line [tex]\( y = 2x \)[/tex] is drawn except at [tex]\( x = 0 \)[/tex].
- At [tex]\( x = 0 \)[/tex], there's an isolated point [tex]\((0, 3)\)[/tex].
### (d) Finding the Range
The range of a function is the set of all possible values of [tex]\( f(x) \)[/tex] that the function can take. From the function behavior:
- When [tex]\( x \neq 0 \)[/tex], [tex]\( f(x) = 2x \)[/tex] can take any value from [tex]\( -\infty \)[/tex] to [tex]\( \infty \)[/tex] except at 0.
- At [tex]\( x = 0 \)[/tex], [tex]\( f(x) = 3 \)[/tex].
Thus, the range of the function [tex]\( f \)[/tex] is all real numbers except at the value 0:
[tex]\[ \boxed{(-\infty, 0) \cup (0, \infty)} \][/tex]
This completes the thorough step-by-step solution to the given problem.
### (a) Finding the Domain of the Function
The domain of a function is the set of all possible values of [tex]\( x \)[/tex] for which the function is defined. For the given function:
[tex]\[ f(x) = \begin{cases} 2x & \text{if } x \neq 0 \\ 3 & \text{if } x = 0 \end{cases} \][/tex]
The function [tex]\( f \)[/tex] is defined for all real numbers [tex]\( x \)[/tex]. There are no restrictions on [tex]\( x \)[/tex] since the function provides values for every possible [tex]\( x \)[/tex], whether [tex]\( x = 0 \)[/tex] or [tex]\( x \neq 0 \)[/tex].
So, the domain of the function [tex]\( f \)[/tex] is:
[tex]\[ \boxed{(-\infty, \infty)} \][/tex]
### (b) Locating the Intercepts
Y-Intercept:
The y-intercept is the point where [tex]\( x = 0 \)[/tex]. Substituting [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ f(0) = 3 \][/tex]
Thus, the y-intercept is:
[tex]\[ \boxed{3} \][/tex]
X-Intercept:
The x-intercept is the point where [tex]\( f(x) = 0 \)[/tex]. For [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ \begin{cases} 2x = 0 & \text{if } x \neq 0 \\ 3 = 0 & \text{if } x = 0 \end{cases} \][/tex]
For [tex]\( x \neq 0 \)[/tex], solving [tex]\( 2x = 0 \)[/tex] gives [tex]\( x = 0 \)[/tex], but at [tex]\( x = 0 \)[/tex], [tex]\( f(x) = 3 \neq 0 \)[/tex]. Therefore, there is no valid [tex]\( x \)[/tex] for which [tex]\( f(x) = 0 \)[/tex].
Thus, there are no x-intercepts:
[tex]\[ \boxed{\text{None}} \][/tex]
### (c) Graphing the Function
To graph the function, we consider the two cases:
1. When [tex]\( x \neq 0 \)[/tex], the graph of [tex]\( f(x) = 2x \)[/tex] is a straight line passing through the origin with a slope of 2.
2. At [tex]\( x = 0 \)[/tex], the function takes the value [tex]\( f(0) = 3 \)[/tex]. This is a point away from the line [tex]\( 2x \)[/tex].
Here's a rough sketch of the graph:
- For [tex]\( x \neq 0 \)[/tex], the line [tex]\( y = 2x \)[/tex] is drawn except at [tex]\( x = 0 \)[/tex].
- At [tex]\( x = 0 \)[/tex], there's an isolated point [tex]\((0, 3)\)[/tex].
### (d) Finding the Range
The range of a function is the set of all possible values of [tex]\( f(x) \)[/tex] that the function can take. From the function behavior:
- When [tex]\( x \neq 0 \)[/tex], [tex]\( f(x) = 2x \)[/tex] can take any value from [tex]\( -\infty \)[/tex] to [tex]\( \infty \)[/tex] except at 0.
- At [tex]\( x = 0 \)[/tex], [tex]\( f(x) = 3 \)[/tex].
Thus, the range of the function [tex]\( f \)[/tex] is all real numbers except at the value 0:
[tex]\[ \boxed{(-\infty, 0) \cup (0, \infty)} \][/tex]
This completes the thorough step-by-step solution to the given problem.
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Your questions deserve reliable answers. Thanks for visiting IDNLearn.com, and see you again soon for more helpful information.