Get expert advice and community support on IDNLearn.com. Get comprehensive answers to all your questions from our network of experienced experts.
Sagot :
Let's construct the step-by-step solution to find the expected value, variance, and standard deviation based on the given data.
### Step-by-Step Solution
#### 1. Complete the Table for [tex]\( x \)[/tex] (Money Collected)
Given that Bob collects $0.80 per bagel, we can calculate [tex]\( x \)[/tex] for different numbers of bagels:
| Number of Bagels | [tex]\( x \)[/tex] = Money Collected (in dollars) | [tex]\( P(z) \)[/tex] = Probability |
|------------------|---------------------------------------|--------------------------|
| 1 | 0.80 | 0.5 |
| 2 | 1.60 | 0.1 |
| 3 | 2.40 | 0.1 |
| 6 | 4.80 | 0.1 |
| 12 | 9.6 | 0.1 |
#### 2. Calculate the Expected Value [tex]\( E(X) \)[/tex]
The expected value [tex]\( E(X) \)[/tex] is defined as:
[tex]\[ E(X) = \sum (x_i \cdot P(x_i)) \][/tex]
Using the values of [tex]\( x \)[/tex] and [tex]\( P(x) \)[/tex]:
[tex]\[ E(X) = (0.80 \cdot 0.5) + (1.60 \cdot 0.1) + (2.40 \cdot 0.1) + (4.80 \cdot 0.1) + (9.6 \cdot 0.1) \][/tex]
[tex]\[ E(X) = 0.40 + 0.16 + 0.24 + 0.48 + 0.96 \][/tex]
[tex]\[ E(X) = 2.24 \][/tex]
So, the expected value [tex]\( E(X) \)[/tex] is 2.24.
#### 3. Calculate the Variance [tex]\( \text{Var}(X) \)[/tex]
Variance [tex]\( \text{Var}(X) \)[/tex] is defined as:
[tex]\[ \text{Var}(X) = \sum \left( (x_i - \mu)^2 \cdot P(x_i) \right) \][/tex]
Where [tex]\( \mu \)[/tex] is the expected value. First, we find [tex]\( (x_i - \mu)^2 \)[/tex] for each [tex]\( x \)[/tex]:
[tex]\[ \begin{align*} (0.80 - 2.24)^2 & = 2.07 \\ (1.60 - 2.24)^2 & = 0.4096 \\ (2.40 - 2.24)^2 & = 0.0256 \\ (4.80 - 2.24)^2 & = 6.5536 \\ (9.60 - 2.24)^2 & = 54.0544 \\ \end{align*} \][/tex]
Next, we multiply by their respective probabilities [tex]\( P(x) \)[/tex]:
[tex]\[ \begin{align*} 2.07 \cdot 0.5 & = 1.035 \\ 0.4096 \cdot 0.1 & = 0.04096 \\ 0.0256 \cdot 0.1 & = 0.00256 \\ 6.5536 \cdot 0.1 & = 0.65536 \\ 54.0544 \cdot 0.1 & = 5.40544 \\ \end{align*} \][/tex]
Finally, summing these values gives the variance:
[tex]\[ \text{Var}(X) = 1.035 + 0.04096 + 0.00256 + 0.65536 + 5.40544 = 7.13932 \][/tex]
#### 4. Calculate the Standard Deviation [tex]\( \sigma \)[/tex]
The standard deviation is the square root of the variance:
[tex]\[ \sigma = \sqrt{\text{Var}(X)} \][/tex]
[tex]\[ \sigma = \sqrt{7.13932} \approx 2.6744 \][/tex]
Thus, the standard deviation is approximately 2.67 (rounded to the nearest hundredth).
### Conclusion
In conclusion:
- The expected value [tex]\( E(X) \)[/tex] is 2.24.
- The variance [tex]\( \text{Var}(X) \)[/tex] is 7.13932.
- The standard deviation [tex]\( \sigma \)[/tex] is 2.67.
### Step-by-Step Solution
#### 1. Complete the Table for [tex]\( x \)[/tex] (Money Collected)
Given that Bob collects $0.80 per bagel, we can calculate [tex]\( x \)[/tex] for different numbers of bagels:
| Number of Bagels | [tex]\( x \)[/tex] = Money Collected (in dollars) | [tex]\( P(z) \)[/tex] = Probability |
|------------------|---------------------------------------|--------------------------|
| 1 | 0.80 | 0.5 |
| 2 | 1.60 | 0.1 |
| 3 | 2.40 | 0.1 |
| 6 | 4.80 | 0.1 |
| 12 | 9.6 | 0.1 |
#### 2. Calculate the Expected Value [tex]\( E(X) \)[/tex]
The expected value [tex]\( E(X) \)[/tex] is defined as:
[tex]\[ E(X) = \sum (x_i \cdot P(x_i)) \][/tex]
Using the values of [tex]\( x \)[/tex] and [tex]\( P(x) \)[/tex]:
[tex]\[ E(X) = (0.80 \cdot 0.5) + (1.60 \cdot 0.1) + (2.40 \cdot 0.1) + (4.80 \cdot 0.1) + (9.6 \cdot 0.1) \][/tex]
[tex]\[ E(X) = 0.40 + 0.16 + 0.24 + 0.48 + 0.96 \][/tex]
[tex]\[ E(X) = 2.24 \][/tex]
So, the expected value [tex]\( E(X) \)[/tex] is 2.24.
#### 3. Calculate the Variance [tex]\( \text{Var}(X) \)[/tex]
Variance [tex]\( \text{Var}(X) \)[/tex] is defined as:
[tex]\[ \text{Var}(X) = \sum \left( (x_i - \mu)^2 \cdot P(x_i) \right) \][/tex]
Where [tex]\( \mu \)[/tex] is the expected value. First, we find [tex]\( (x_i - \mu)^2 \)[/tex] for each [tex]\( x \)[/tex]:
[tex]\[ \begin{align*} (0.80 - 2.24)^2 & = 2.07 \\ (1.60 - 2.24)^2 & = 0.4096 \\ (2.40 - 2.24)^2 & = 0.0256 \\ (4.80 - 2.24)^2 & = 6.5536 \\ (9.60 - 2.24)^2 & = 54.0544 \\ \end{align*} \][/tex]
Next, we multiply by their respective probabilities [tex]\( P(x) \)[/tex]:
[tex]\[ \begin{align*} 2.07 \cdot 0.5 & = 1.035 \\ 0.4096 \cdot 0.1 & = 0.04096 \\ 0.0256 \cdot 0.1 & = 0.00256 \\ 6.5536 \cdot 0.1 & = 0.65536 \\ 54.0544 \cdot 0.1 & = 5.40544 \\ \end{align*} \][/tex]
Finally, summing these values gives the variance:
[tex]\[ \text{Var}(X) = 1.035 + 0.04096 + 0.00256 + 0.65536 + 5.40544 = 7.13932 \][/tex]
#### 4. Calculate the Standard Deviation [tex]\( \sigma \)[/tex]
The standard deviation is the square root of the variance:
[tex]\[ \sigma = \sqrt{\text{Var}(X)} \][/tex]
[tex]\[ \sigma = \sqrt{7.13932} \approx 2.6744 \][/tex]
Thus, the standard deviation is approximately 2.67 (rounded to the nearest hundredth).
### Conclusion
In conclusion:
- The expected value [tex]\( E(X) \)[/tex] is 2.24.
- The variance [tex]\( \text{Var}(X) \)[/tex] is 7.13932.
- The standard deviation [tex]\( \sigma \)[/tex] is 2.67.
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for visiting IDNLearn.com. We’re here to provide dependable answers, so visit us again soon.