Discover new knowledge and insights with IDNLearn.com's extensive Q&A platform. Discover the information you need quickly and easily with our reliable and thorough Q&A platform.
Sagot :
Let's construct the step-by-step solution to find the expected value, variance, and standard deviation based on the given data.
### Step-by-Step Solution
#### 1. Complete the Table for [tex]\( x \)[/tex] (Money Collected)
Given that Bob collects $0.80 per bagel, we can calculate [tex]\( x \)[/tex] for different numbers of bagels:
| Number of Bagels | [tex]\( x \)[/tex] = Money Collected (in dollars) | [tex]\( P(z) \)[/tex] = Probability |
|------------------|---------------------------------------|--------------------------|
| 1 | 0.80 | 0.5 |
| 2 | 1.60 | 0.1 |
| 3 | 2.40 | 0.1 |
| 6 | 4.80 | 0.1 |
| 12 | 9.6 | 0.1 |
#### 2. Calculate the Expected Value [tex]\( E(X) \)[/tex]
The expected value [tex]\( E(X) \)[/tex] is defined as:
[tex]\[ E(X) = \sum (x_i \cdot P(x_i)) \][/tex]
Using the values of [tex]\( x \)[/tex] and [tex]\( P(x) \)[/tex]:
[tex]\[ E(X) = (0.80 \cdot 0.5) + (1.60 \cdot 0.1) + (2.40 \cdot 0.1) + (4.80 \cdot 0.1) + (9.6 \cdot 0.1) \][/tex]
[tex]\[ E(X) = 0.40 + 0.16 + 0.24 + 0.48 + 0.96 \][/tex]
[tex]\[ E(X) = 2.24 \][/tex]
So, the expected value [tex]\( E(X) \)[/tex] is 2.24.
#### 3. Calculate the Variance [tex]\( \text{Var}(X) \)[/tex]
Variance [tex]\( \text{Var}(X) \)[/tex] is defined as:
[tex]\[ \text{Var}(X) = \sum \left( (x_i - \mu)^2 \cdot P(x_i) \right) \][/tex]
Where [tex]\( \mu \)[/tex] is the expected value. First, we find [tex]\( (x_i - \mu)^2 \)[/tex] for each [tex]\( x \)[/tex]:
[tex]\[ \begin{align*} (0.80 - 2.24)^2 & = 2.07 \\ (1.60 - 2.24)^2 & = 0.4096 \\ (2.40 - 2.24)^2 & = 0.0256 \\ (4.80 - 2.24)^2 & = 6.5536 \\ (9.60 - 2.24)^2 & = 54.0544 \\ \end{align*} \][/tex]
Next, we multiply by their respective probabilities [tex]\( P(x) \)[/tex]:
[tex]\[ \begin{align*} 2.07 \cdot 0.5 & = 1.035 \\ 0.4096 \cdot 0.1 & = 0.04096 \\ 0.0256 \cdot 0.1 & = 0.00256 \\ 6.5536 \cdot 0.1 & = 0.65536 \\ 54.0544 \cdot 0.1 & = 5.40544 \\ \end{align*} \][/tex]
Finally, summing these values gives the variance:
[tex]\[ \text{Var}(X) = 1.035 + 0.04096 + 0.00256 + 0.65536 + 5.40544 = 7.13932 \][/tex]
#### 4. Calculate the Standard Deviation [tex]\( \sigma \)[/tex]
The standard deviation is the square root of the variance:
[tex]\[ \sigma = \sqrt{\text{Var}(X)} \][/tex]
[tex]\[ \sigma = \sqrt{7.13932} \approx 2.6744 \][/tex]
Thus, the standard deviation is approximately 2.67 (rounded to the nearest hundredth).
### Conclusion
In conclusion:
- The expected value [tex]\( E(X) \)[/tex] is 2.24.
- The variance [tex]\( \text{Var}(X) \)[/tex] is 7.13932.
- The standard deviation [tex]\( \sigma \)[/tex] is 2.67.
### Step-by-Step Solution
#### 1. Complete the Table for [tex]\( x \)[/tex] (Money Collected)
Given that Bob collects $0.80 per bagel, we can calculate [tex]\( x \)[/tex] for different numbers of bagels:
| Number of Bagels | [tex]\( x \)[/tex] = Money Collected (in dollars) | [tex]\( P(z) \)[/tex] = Probability |
|------------------|---------------------------------------|--------------------------|
| 1 | 0.80 | 0.5 |
| 2 | 1.60 | 0.1 |
| 3 | 2.40 | 0.1 |
| 6 | 4.80 | 0.1 |
| 12 | 9.6 | 0.1 |
#### 2. Calculate the Expected Value [tex]\( E(X) \)[/tex]
The expected value [tex]\( E(X) \)[/tex] is defined as:
[tex]\[ E(X) = \sum (x_i \cdot P(x_i)) \][/tex]
Using the values of [tex]\( x \)[/tex] and [tex]\( P(x) \)[/tex]:
[tex]\[ E(X) = (0.80 \cdot 0.5) + (1.60 \cdot 0.1) + (2.40 \cdot 0.1) + (4.80 \cdot 0.1) + (9.6 \cdot 0.1) \][/tex]
[tex]\[ E(X) = 0.40 + 0.16 + 0.24 + 0.48 + 0.96 \][/tex]
[tex]\[ E(X) = 2.24 \][/tex]
So, the expected value [tex]\( E(X) \)[/tex] is 2.24.
#### 3. Calculate the Variance [tex]\( \text{Var}(X) \)[/tex]
Variance [tex]\( \text{Var}(X) \)[/tex] is defined as:
[tex]\[ \text{Var}(X) = \sum \left( (x_i - \mu)^2 \cdot P(x_i) \right) \][/tex]
Where [tex]\( \mu \)[/tex] is the expected value. First, we find [tex]\( (x_i - \mu)^2 \)[/tex] for each [tex]\( x \)[/tex]:
[tex]\[ \begin{align*} (0.80 - 2.24)^2 & = 2.07 \\ (1.60 - 2.24)^2 & = 0.4096 \\ (2.40 - 2.24)^2 & = 0.0256 \\ (4.80 - 2.24)^2 & = 6.5536 \\ (9.60 - 2.24)^2 & = 54.0544 \\ \end{align*} \][/tex]
Next, we multiply by their respective probabilities [tex]\( P(x) \)[/tex]:
[tex]\[ \begin{align*} 2.07 \cdot 0.5 & = 1.035 \\ 0.4096 \cdot 0.1 & = 0.04096 \\ 0.0256 \cdot 0.1 & = 0.00256 \\ 6.5536 \cdot 0.1 & = 0.65536 \\ 54.0544 \cdot 0.1 & = 5.40544 \\ \end{align*} \][/tex]
Finally, summing these values gives the variance:
[tex]\[ \text{Var}(X) = 1.035 + 0.04096 + 0.00256 + 0.65536 + 5.40544 = 7.13932 \][/tex]
#### 4. Calculate the Standard Deviation [tex]\( \sigma \)[/tex]
The standard deviation is the square root of the variance:
[tex]\[ \sigma = \sqrt{\text{Var}(X)} \][/tex]
[tex]\[ \sigma = \sqrt{7.13932} \approx 2.6744 \][/tex]
Thus, the standard deviation is approximately 2.67 (rounded to the nearest hundredth).
### Conclusion
In conclusion:
- The expected value [tex]\( E(X) \)[/tex] is 2.24.
- The variance [tex]\( \text{Var}(X) \)[/tex] is 7.13932.
- The standard deviation [tex]\( \sigma \)[/tex] is 2.67.
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Thank you for visiting IDNLearn.com. We’re here to provide accurate and reliable answers, so visit us again soon.