IDNLearn.com is your go-to resource for finding precise and accurate answers. Join our interactive Q&A community and access a wealth of reliable answers to your most pressing questions.
Sagot :
To solve the integral [tex]\(\int \frac{x^2 + 2}{x^2 + 3x + 7} \, dx\)[/tex], we will break it down step by step.
1. Rewrite the Integrand:
We start by analyzing the integrand [tex]\(\frac{x^2 + 2}{x^2 + 3x + 7}\)[/tex]. Notice that the denominator is a quadratic polynomial. Our goal is to express the integrand in a form that is easier to integrate.
2. Complete the Square in the Denominator:
The denominator [tex]\(x^2 + 3x + 7\)[/tex] can be rewritten by completing the square:
[tex]\[ x^2 + 3x + 7 = \left(x^2 + 3x + \frac{9}{4}\right) + \frac{19}{4} = \left(x + \frac{3}{2}\right)^2 + \frac{19}{4} \][/tex]
3. Simplify the Numerator:
Next, we rewrite the integrand considering the new form of the denominator. Notice that [tex]\(x^2 + 2\)[/tex] can be written as:
[tex]\[ x^2 + 2 = (x^2 + 3x + 7) - 3x - 5 \][/tex]
Therefore, we have:
[tex]\[ \frac{x^2 + 2}{x^2 + 3x + 7} = \frac{(x^2 + 3x + 7) - 3x - 5}{x^2 + 3x + 7} = 1 - \frac{3x + 5}{x^2 + 3x + 7} \][/tex]
4. Integrate Each Term Separately:
Now, we split the integral:
[tex]\[ \int \frac{x^2 + 2}{x^2 + 3x + 7} \, dx = \int 1 \, dx - \int \frac{3x + 5}{x^2 + 3x + 7} \, dx \][/tex]
5. Integrate the First Part:
The first part is straightforward:
[tex]\[ \int 1 \, dx = x \][/tex]
6. Integrate the Second Part:
To integrate [tex]\(\int \frac{3x + 5}{x^2 + 3x + 7} \, dx\)[/tex], we can split the fraction and apply the method of partial fractions. First, rewrite the numerator [tex]\(3x + 5\)[/tex] as a sum of the derivative of the denominator plus a constant:
[tex]\[ 3x + 5 = 3(x^2 + 3x + 7)' - 9 + 5 = 3 (2x + 3) + (-4) \][/tex]
So now we can write:
[tex]\[ \frac{3x + 5}{x^2 + 3x + 7} = \frac{3(2x + 3) - 4}{x^2 + 3x + 7} = 3 \cdot \frac{2x + 3}{x^2 + 3x + 7} - \frac{4}{x^2 + 3x + 7} \][/tex]
First Sub-integral:
[tex]\[ \int 3 \cdot \frac{2x + 3}{x^2 + 3x + 7} \, dx = 3 \int \frac{2x + 3}{x^2 + 3x + 7} \, dx \][/tex]
Notice that [tex]\(2x + 3\)[/tex] is the derivative of [tex]\(x^2 + 3x + 7\)[/tex]:
[tex]\[ u = x^2 + 3x + 7, \quad du = (2x + 3) dx \][/tex]
So,
[tex]\[ 3 \int \frac{2x + 3}{x^2 + 3x + 7} \, dx = 3 \ln|x^2 + 3x + 7| \][/tex]
Second Sub-integral:
[tex]\[ - \int \frac{4}{x^2 + 3x + 7} \, dx \][/tex]
Use the completed square on the denominator:
[tex]\[ x^2 + 3x + 7 = (x + \frac{3}{2})^2 + \frac{19}{4} \][/tex]
Let [tex]\( v = x + \frac{3}{2} \)[/tex]:
[tex]\[ \int \frac{4}{(x + \frac{3}{2})^2 + \frac{19}{4}} \, dx = \int \frac{4}{v^2 + \left(\frac{\sqrt{19}}{2}\right)^2} \, dv \][/tex]
This is a standard arctangent form:
[tex]\[ \int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan(\frac{x}{a}) + C \][/tex]
Hence,
[tex]\[ -4 \cdot \frac{2}{\sqrt{19}} \arctan \left(\frac{2v - 3}{\sqrt{19}}\right) \][/tex]
Combining everything, the final answer is:
[tex]\[ \int \frac{x^2 + 2}{x^2 + 3x + 7} \, dx = x - \frac{3}{2} \ln|x^2 + 3x + 7| - \frac{\sqrt{19}}{19} \arctan \left(\frac{2\sqrt{19}x + 3\sqrt{19}}{19}\right) + C \][/tex]
1. Rewrite the Integrand:
We start by analyzing the integrand [tex]\(\frac{x^2 + 2}{x^2 + 3x + 7}\)[/tex]. Notice that the denominator is a quadratic polynomial. Our goal is to express the integrand in a form that is easier to integrate.
2. Complete the Square in the Denominator:
The denominator [tex]\(x^2 + 3x + 7\)[/tex] can be rewritten by completing the square:
[tex]\[ x^2 + 3x + 7 = \left(x^2 + 3x + \frac{9}{4}\right) + \frac{19}{4} = \left(x + \frac{3}{2}\right)^2 + \frac{19}{4} \][/tex]
3. Simplify the Numerator:
Next, we rewrite the integrand considering the new form of the denominator. Notice that [tex]\(x^2 + 2\)[/tex] can be written as:
[tex]\[ x^2 + 2 = (x^2 + 3x + 7) - 3x - 5 \][/tex]
Therefore, we have:
[tex]\[ \frac{x^2 + 2}{x^2 + 3x + 7} = \frac{(x^2 + 3x + 7) - 3x - 5}{x^2 + 3x + 7} = 1 - \frac{3x + 5}{x^2 + 3x + 7} \][/tex]
4. Integrate Each Term Separately:
Now, we split the integral:
[tex]\[ \int \frac{x^2 + 2}{x^2 + 3x + 7} \, dx = \int 1 \, dx - \int \frac{3x + 5}{x^2 + 3x + 7} \, dx \][/tex]
5. Integrate the First Part:
The first part is straightforward:
[tex]\[ \int 1 \, dx = x \][/tex]
6. Integrate the Second Part:
To integrate [tex]\(\int \frac{3x + 5}{x^2 + 3x + 7} \, dx\)[/tex], we can split the fraction and apply the method of partial fractions. First, rewrite the numerator [tex]\(3x + 5\)[/tex] as a sum of the derivative of the denominator plus a constant:
[tex]\[ 3x + 5 = 3(x^2 + 3x + 7)' - 9 + 5 = 3 (2x + 3) + (-4) \][/tex]
So now we can write:
[tex]\[ \frac{3x + 5}{x^2 + 3x + 7} = \frac{3(2x + 3) - 4}{x^2 + 3x + 7} = 3 \cdot \frac{2x + 3}{x^2 + 3x + 7} - \frac{4}{x^2 + 3x + 7} \][/tex]
First Sub-integral:
[tex]\[ \int 3 \cdot \frac{2x + 3}{x^2 + 3x + 7} \, dx = 3 \int \frac{2x + 3}{x^2 + 3x + 7} \, dx \][/tex]
Notice that [tex]\(2x + 3\)[/tex] is the derivative of [tex]\(x^2 + 3x + 7\)[/tex]:
[tex]\[ u = x^2 + 3x + 7, \quad du = (2x + 3) dx \][/tex]
So,
[tex]\[ 3 \int \frac{2x + 3}{x^2 + 3x + 7} \, dx = 3 \ln|x^2 + 3x + 7| \][/tex]
Second Sub-integral:
[tex]\[ - \int \frac{4}{x^2 + 3x + 7} \, dx \][/tex]
Use the completed square on the denominator:
[tex]\[ x^2 + 3x + 7 = (x + \frac{3}{2})^2 + \frac{19}{4} \][/tex]
Let [tex]\( v = x + \frac{3}{2} \)[/tex]:
[tex]\[ \int \frac{4}{(x + \frac{3}{2})^2 + \frac{19}{4}} \, dx = \int \frac{4}{v^2 + \left(\frac{\sqrt{19}}{2}\right)^2} \, dv \][/tex]
This is a standard arctangent form:
[tex]\[ \int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan(\frac{x}{a}) + C \][/tex]
Hence,
[tex]\[ -4 \cdot \frac{2}{\sqrt{19}} \arctan \left(\frac{2v - 3}{\sqrt{19}}\right) \][/tex]
Combining everything, the final answer is:
[tex]\[ \int \frac{x^2 + 2}{x^2 + 3x + 7} \, dx = x - \frac{3}{2} \ln|x^2 + 3x + 7| - \frac{\sqrt{19}}{19} \arctan \left(\frac{2\sqrt{19}x + 3\sqrt{19}}{19}\right) + C \][/tex]
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.