From simple questions to complex issues, IDNLearn.com has the answers you need. Our platform provides trustworthy answers to help you make informed decisions quickly and easily.

What are the equilibrium concentrations of [tex]$H_3O^+$[/tex], [tex]$CN^-$[/tex], and [tex]HCN[/tex] in a 0.011 M solution of [tex]HCN[/tex] [tex]\left(K_a = 4.0 \times 10^{-10}\right)[/tex]?

[tex]\left[H_3O^+\right] = \square \, M[/tex]
[tex]\left[CN^-\right] = \square \, M[/tex]
[tex]\left[HCN\right] = \square \, M[/tex]

What is the pH of the solution?

[tex]pH = \square[/tex]


Sagot :

To find the equilibrium concentrations of [tex]\( \text{H}_3\text{O}^+ \)[/tex], [tex]\( \text{CN}^- \)[/tex], and HCN in a 0.011 M solution of HCN with [tex]\( K_a = 4.0 \times 10^{-10} \)[/tex], we can follow these steps:

1. Establish Initial Conditions and Define Variables:
- The initial concentration of HCN is [tex]\(0.011 \, \text{M}\)[/tex].
- The dissociation constant [tex]\( K_a \)[/tex] is [tex]\(4.0 \times 10^{-10}\)[/tex].

2. Set Up the Equilibrium Expression:
- HCN dissociates as: [tex]\[ \text{HCN} \leftrightarrow \text{H}^+ + \text{CN}^- \][/tex]
- At equilibrium, let [tex]\( [\text{H}_3\text{O}^+] = x \)[/tex] and [tex]\( [\text{CN}^-] = x \)[/tex]. The concentration of HCN at equilibrium will be [tex]\( [\text{HCN}]_{\text{initial}} - x \)[/tex].

3. Write the Expression for the Dissociation Constant [tex]\(K_a\)[/tex]:
[tex]\[ K_a = \frac{[\text{H}_3\text{O}^+][\text{CN}^-]}{[\text{HCN}]} = \frac{x \cdot x}{0.011 - x} \][/tex]

4. Simplify the Equation:
- Since HCN is a weak acid, we assume [tex]\( x \)[/tex] is significantly smaller than 0.011, so [tex]\( 0.011 - x \approx 0.011 \)[/tex].
[tex]\[ K_a \approx \frac{x^2}{0.011} \][/tex]

5. Solve for [tex]\( x \)[/tex]:
[tex]\[ x^2 = K_a \cdot 0.011 \][/tex]
[tex]\[ x = \sqrt{K_a \cdot 0.011} \][/tex]
- Plugging in the values: [tex]\( x = \sqrt{4.0 \times 10^{-10} \times 0.011} \)[/tex].

6. Calculate [tex]\( x \)[/tex]:
- [tex]\( x \)[/tex] is found to be approximately [tex]\( 2.097617696340303 \times 10^{-6} \)[/tex].

7. Determine the Equilibrium Concentrations:
- [tex]\( [\text{H}_3\text{O}^+] = x = 2.097617696340303 \times 10^{-6} \, \text{M} \)[/tex].
- [tex]\( [\text{CN}^-] = x = 2.097617696340303 \times 10^{-6} \, \text{M} \)[/tex].
- [tex]\( [\text{HCN}] = 0.011 - x = 0.01099790238230366 \, \text{M} \)[/tex].

8. Calculate the pH:
- The pH is defined as: [tex]\( \text{pH} = -\log_{10} [\text{H}_3\text{O}^+] \)[/tex].
- Substituting the value: [tex]\( \text{pH} = -\log_{10} (2.097617696340303 \times 10^{-6}) \)[/tex].
- This gives a pH of approximately [tex]\( 5.678273661756906 \)[/tex].

Therefore, the equilibrium concentrations and pH of the solution are:
[tex]\[ [\text{H}_3\text{O}^+] = 2.097617696340303 \times 10^{-6} \, \text{M} \][/tex]
[tex]\[ [\text{CN}^-] = 2.097617696340303 \times 10^{-6} \, \text{M} \][/tex]
[tex]\[ [\text{HCN}] = 0.01099790238230366 \, \text{M} \][/tex]
[tex]\[ \text{pH} = 5.678273661756906 \][/tex]