IDNLearn.com offers a comprehensive platform for finding and sharing knowledge. Get timely and accurate answers to your questions from our dedicated community of experts who are here to help you.

Use the approach in Gauss's Problem to find the following sums of arithmetic sequences:

a. [tex]1 + 2 + 3 + 4 + \ldots + 998[/tex]

b. [tex]1 + 3 + 5 + 7 + \ldots + 1001[/tex]

c. [tex]2 + 5 + 8 + 11 + \ldots + 293[/tex]

d. [tex]685 + 678 + 671 + 664 + \ldots + 6[/tex]


Sagot :

Sure, let's find the sums of the given arithmetic sequences step-by-step using the approach in Gauss's Problem.

### Part a: [tex]\(1 + 2 + 3 + 4 + \ldots + 998\)[/tex]

The sum of the first [tex]\(n\)[/tex] natural numbers can be calculated using the formula:
[tex]\[ S = \frac{n(n+1)}{2} \][/tex]

Here, [tex]\(n = 998\)[/tex]. Plugging in the value, we get:
[tex]\[ S = \frac{998 \cdot (998 + 1)}{2} = \frac{998 \cdot 999}{2} = 498501 \][/tex]
So, the sum of the sequence [tex]\(1 + 2 + 3 + \ldots + 998\)[/tex] is [tex]\(498501\)[/tex].

### Part b: [tex]\(1 + 3 + 5 + 7 + \ldots + 1001\)[/tex]

This is an arithmetic sequence where the first term [tex]\(a = 1\)[/tex], the common difference [tex]\(d = 2\)[/tex], and the last term [tex]\(l = 1001\)[/tex].

First, we find the number of terms [tex]\(n\)[/tex] in the sequence using:
[tex]\[ l = a + (n-1)d \Rightarrow 1001 = 1 + (n-1)\cdot2 \Rightarrow 1000 = 2(n-1) \Rightarrow n = 501 \][/tex]

The sum of an arithmetic sequence is given by:
[tex]\[ S = \frac{n(a + l)}{2} \][/tex]

Substituting the values, we get:
[tex]\[ S = \frac{501(1 + 1001)}{2} = \frac{501 \cdot 1002}{2} = 251001 \][/tex]
So, the sum of the sequence [tex]\(1 + 3 + 5 + \ldots + 1001\)[/tex] is [tex]\(251001\)[/tex].

### Part c: [tex]\(2 + 5 + 8 + 11 + \ldots + 293\)[/tex]

This is an arithmetic sequence where the first term [tex]\(a = 2\)[/tex], the common difference [tex]\(d = 3\)[/tex], and the last term [tex]\(l = 293\)[/tex].

First, we find the number of terms [tex]\(n\)[/tex] in the sequence using:
[tex]\[ l = a + (n-1)d \Rightarrow 293 = 2 + (n-1)\cdot3 \Rightarrow 291 = 3(n-1) \Rightarrow n = 98 \][/tex]

The sum of an arithmetic sequence is:
[tex]\[ S = \frac{n(a + l)}{2} \][/tex]

Substituting the values, we get:
[tex]\[ S = \frac{98(2 + 293)}{2} = \frac{98 \cdot 295}{2} = 14455 \][/tex]
So, the sum of the sequence [tex]\(2 + 5 + 8 + \ldots + 293\)[/tex] is [tex]\(14455\)[/tex].

### Part d: [tex]\(685 + 678 + 671 + 664 + \ldots + 6\)[/tex]

This is an arithmetic sequence where the first term [tex]\(a = 685\)[/tex], the common difference [tex]\(d = -7\)[/tex], and the last term [tex]\(l = 6\)[/tex].

First, we find the number of terms [tex]\(n\)[/tex] in the sequence using:
[tex]\[ l = a + (n-1)d \Rightarrow 6 = 685 + (n-1)(-7) \Rightarrow 6 = 685 - 7(n-1) \Rightarrow -679 = -7(n-1) \Rightarrow 679 = 7(n-1) \Rightarrow n = 98 \][/tex]

The sum of an arithmetic sequence is:
[tex]\[ S = \frac{n(a + l)}{2} \][/tex]

Substituting the values, we get:
[tex]\[ S = \frac{98(685 + 6)}{2} = \frac{98 \cdot 691}{2} = 33859 \][/tex]
So, the sum of the sequence [tex]\(685 + 678 + 671 + \ldots + 6\)[/tex] is [tex]\(33859\)[/tex].

Overall, the sums are:
- [tex]\(1 + 2 + 3 + \ldots + 998 = 498501\)[/tex]
- [tex]\(1 + 3 + 5 + \ldots + 1001 = 251001\)[/tex]
- [tex]\(2 + 5 + 8 + \ldots + 293 = 14455\)[/tex]
- [tex]\(685 + 678 + 671 + \ldots + 6 = 33859\)[/tex]