IDNLearn.com provides a comprehensive solution for all your question and answer needs. Our platform provides detailed and accurate responses from experts, helping you navigate any topic with confidence.

1. Find the inverse Laplace transform (ILT) of:
[tex]\[ \frac{7}{s^4} \][/tex]
[5 marks]

2. Find the inverse Laplace transform (ILT) of:
[tex]\[ \frac{7s + 15}{s^2 + 2} \][/tex]
[5 marks]

3. Find the inverse Laplace transform (ILT) of:
[tex]\[ \frac{2}{(s + 1)(s + 2)^2} \][/tex]
[5 marks]


Sagot :

Let's solve the problem of finding the inverse Laplace transforms of the given functions.

### Problem 1: Find the Inverse Laplace Transform of [tex]\(\frac{7s + 15}{s^2 + 2}\)[/tex]

The given function in the Laplace domain is [tex]\( \frac{7s + 15}{s^2 + 2} \)[/tex].

#### Step-by-Step Solution:
1. Identify parts of the numerator that correspond to known Laplace transforms:
- Notice that [tex]\(\frac{7s}{s^2 + 2}\)[/tex] and [tex]\(\frac{15}{s^2 + 2}\)[/tex] can be treated separately.
- The term [tex]\(\frac{7s}{s^2 + 2}\)[/tex] is in the form of the Laplace transform of [tex]\(\cos(\sqrt{2}t)\)[/tex] which transforms to [tex]\(\frac{s}{s^2 + (\sqrt{2})^2}\)[/tex].
- The term [tex]\(\frac{15}{s^2 + 2}\)[/tex] is in the form of the Laplace transform of [tex]\(\sin(\sqrt{2}t)\)[/tex] which transforms to [tex]\(\frac{\sqrt{2}}{s^2 + (\sqrt{2})^2}\)[/tex]. However, our coefficient is 15 instead of [tex]\(\sqrt{2}\)[/tex], hence it requires some adjustment.

2. Compute the inverse Laplace transform separately:
- For [tex]\(\frac{7s}{s^2 + 2}\)[/tex]:
[tex]\[ \mathcal{L}^{-1}\left\{\frac{7s}{s^2 + 2}\right\} = 7\cos(\sqrt{2}t) \][/tex]
- For [tex]\(\frac{15}{s^2 + 2}\)[/tex]:
[tex]\[ \mathcal{L}^{-1}\left\{\frac{15}{s^2 + 2}\right\} = \frac{15}{\sqrt{2}}\sin(\sqrt{2}t) = \frac{15\sqrt{2}}{2}\sin(\sqrt{2}t) \][/tex]

3. Combine results:
- The overall inverse Laplace transform is:
[tex]\[ \mathcal{L}^{-1}\left\{\frac{7s + 15}{s^2 + 2}\right\} = 7\cos(\sqrt{2}t) + \frac{15\sqrt{2}}{2}\sin(\sqrt{2}t) \][/tex]

Therefore, the inverse Laplace transform of [tex]\(\frac{7s + 15}{s^2 + 2}\)[/tex] is:
[tex]\[ (15\sqrt{2}/2 \sin(\sqrt{2}t) + 7\cos(\sqrt{2}t))\Heaviside(t) \][/tex]

### Problem 2: Find the Inverse Laplace Transform of [tex]\(\frac{2}{(s+1)(s+2)^2}\)[/tex]

The given function in the Laplace domain is [tex]\(\frac{2}{(s + 1)(s + 2)^2}\)[/tex].

#### Step-by-Step Solution:
1. Decompose the function using partial fraction decomposition:
- We express [tex]\(\frac{2}{(s + 1)(s + 2)^2}\)[/tex] in terms of its partial fractions.
- Let [tex]\(\frac{2}{(s + 1)(s + 2)^2} = \frac{A}{s + 1} + \frac{B}{s + 2} + \frac{C}{(s + 2)^2}\)[/tex]

2. Solve for the constants [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex]:
- Multiply both sides by [tex]\((s + 1)(s + 2)^2\)[/tex] to get:
[tex]\[ 2 = A(s + 2)^2 + B(s + 1)(s + 2) + C(s + 1) \][/tex]
- Substitute [tex]\(s = -1\)[/tex]: [tex]\(2 = C \cdot 1 \Rightarrow C = 2\)[/tex]
- Substitute [tex]\(s = -2\)[/tex]: [tex]\(2 = A \cdot 1 \Rightarrow A = 2\)[/tex]
- Differentiate both sides:
[tex]\[ 0 = 2A(s + 2) + B(s + 2 + s + 1) + C \Rightarrow 0 = 2A(s + 2) + B(2s + 3) + C \][/tex]
- Solve for [tex]\(B\)[/tex]:
[tex]\[ \Rightarrow B = -6 \][/tex]

3. Construct the decomposed form:
- The decomposed form is:
[tex]\[ \frac{2}{(s+1)(s+2)^2} = \frac{2}{s+1} - \frac{6}{(s+2)^2} + \frac{2}{s + 2 } \][/tex]

4. Compute the inverse Laplace transform of each term:
- For [tex]\(\frac{2}{s+1}\)[/tex]:
[tex]\[ \mathcal{L}^{-1} \left\{\frac{2}{s+1}\right\} = 2e^{-t} \][/tex]
- For [tex]\(\frac{2}{s+2}\)[/tex]:
[tex]\[ \mathcal{L}^{-1} \left\{\frac{2}{s+2}\right\} = 2e^{-2t} \][/tex]
- For [tex]\(\frac{-6}{(s+2)^2}\)[/tex]:
[tex]\[ \mathcal{L}^{-1} \left\{\frac{-6}{(s+2)^2}\right\} = -6te^{-2t} \][/tex]

5. Combine results:
- The overall inverse Laplace transform is:
[tex]\[ 2e^{-t} + 2e^{-2t} - 6te^{-2t} \][/tex]

Therefore, the inverse Laplace transform of [tex]\(\frac{2}{(s+1)(s+2)^2}\)[/tex] is:
[tex]\[ (2e^{-t} + 2e^{-2t} - 6te^{-2t}) \Heaviside(t) \][/tex]

### Final Answer:
1. The inverse Laplace transform of [tex]\( \frac{7s + 15}{s^2 + 2} \)[/tex] is:
[tex]\[ (15\sqrt{2}\sin(\sqrt{2}t)/2 + 7\cos(\sqrt{2}t))\Heaviside(t) \][/tex]

2. The inverse Laplace transform of [tex]\( \frac{2}{(s + 1)(s + 2)^2} \)[/tex] is:
[tex]\[ -2te^{-2t} + 2e^{-t}- 2e^{-2t}) \Heaviside(t) \][/tex]

Answer:

### 1. Find the inverse Laplace transform (ILT) of \(\frac{7}{s^4}\)

To find the inverse Laplace transform of \(\frac{7}{s^4}\), use the formula for the inverse Laplace transform of \(\frac{1}{s^n}\), which is \(\frac{t^{n-1}}{(n-1)!}\).

In this case, \(n = 4\), so:

\[

\mathcal{L}^{-1}\left\{\frac{1}{s^4}\right\} = \frac{t^{4-1}}{(4-1)!} = \frac{t^3}{6}

\]

Thus,

\[

\mathcal{L}^{-1}\left\{\frac{7}{s^4}\right\} = 7 \cdot \frac{t^3}{6} = \frac{7t^3}{6}

\]

### 2. Find the inverse Laplace transform (ILT) of \(\frac{7s + 15}{s^2 + 2s + 7}\)

To find the inverse Laplace transform, first simplify the expression by completing the square for the quadratic term in the denominator:

\[

s^2 + 2s + 7 = (s+1)^2 + 6

\]

Thus, the expression becomes:

\[

\frac{7s + 15}{(s+1)^2 + 6}

\]

Separate the numerator into terms that fit the standard Laplace transform forms:

\[

7s + 15 = 7(s+1) + 8

\]

So,

\[

\frac{7s + 15}{(s+1)^2 + 6} = \frac{7(s+1) + 8}{(s+1)^2 + 6} = \frac{7(s+1)}{(s+1)^2 + 6} + \frac{8}{(s+1)^2 + 6}

\]

The inverse Laplace transforms are:

- For \(\frac{7(s+1)}{(s+1)^2 + 6}\), use the fact that \(\mathcal{L}^{-1}\left\{\frac{s-a}{(s-a)^2 + b^2}\right\} = e^{at} \cos(bt)\). Here, \(a = -1\) and \(b = \sqrt{6}\). Thus, the inverse transform is \(7e^{-t} \cos(\sqrt{6}t)\).

- For \(\frac{8}{(s+1)^2 + 6}\), use the fact that \(\mathcal{L}^{-1}\left\{\frac{b}{(s-a)^2 + b^2}\right\} = \frac{b}{\sqrt{b^2}} e^{at} \sin(\sqrt{b^2}t)\). Here, \(a = -1\), \(b = \sqrt{6}\), and \(b = 8\). Thus, the inverse transform is \(\frac{8}{\sqrt{6}} e^{-t} \sin(\sqrt{6}t)\).

Combining these, the inverse Laplace transform is:

\[

\mathcal{L}^{-1}\left\{\frac{7s + 15}{s^2 + 2s + 7}\right\} = 7e^{-t} \cos(\sqrt{6}t) + \frac{8}{\sqrt{6}} e^{-t} \sin(\sqrt{6}t)

\]

### 3. Find the inverse Laplace transform (ILT) of \(\frac{2}{(s + 1)(s + 2)^2}\)

To find the inverse Laplace transform, use partial fraction decomposition:

\[

\frac{2}{(s + 1)(s + 2)^2} = \frac{A}{s + 1} + \frac{B}{s + 2} + \frac{C}{(s + 2)^2}

\]

Multiply through by the denominator \((s + 1)(s + 2)^2\) and solve for \(A\), \(B\), and \(C\):

\[

2 = A(s + 2)^2 + B(s + 1)(s + 2) + C(s + 1)

\]

Substitute suitable values for \(s\) to solve for \(A\), \(B\), and \(C\):

1. Let \(s = -1\):

\[

2 = A(1) \implies A = 2

\]

2. Let \(s = -2\):

\[

2 = C(-1) \implies C = -2

\]

3. Expand and compare coefficients to find \(B\):

\[

2 = 2(s^2 + 4s + 4) + B(s^2 - s - 2) - 2(s + 1)

\]

\[

2 = 2s^2 + 8s + 8 + Bs^2 - Bs - 2s - 2

\]

\[

2 = (2 + B)s^2 + (8 - B - 2)s + (8 - 2)

\]

\[

2 = (2 + B)s^2 + (6 - B)s + 6

\]

Equating coefficients with \(2s^2 + 0s + 2\):

\[

2 + B = 0 \implies B = -2

\]

\[

6 - B = 0 \implies B = 6

\]

Correcting calculation errors, \(B = -4\).

Thus, the partial fractions are:

\[

\frac{2}{(s + 1)(s + 2)^2} = \frac{2}{s + 1} - \frac{4}{s + 2} + \frac{-2}{(s + 2)^2}

\]

Take the inverse Laplace transform of each term:

\[

\mathcal{L}^{-1}\left\{\frac{2}{s + 1}\right\} = 2e^{-t}

\]

\[

\mathcal{L}^{-1}\left\{\frac{-4}{s + 2}\right\} = -4e^{-2t}

\]

\[

\mathcal{L}^{-1}\left\{\frac{-2}{(s + 2)^2}\right\} = -2te^{-2t}

\]

Thus, the inverse Laplace transform is:

\[

\mathcal{L}^{-1}\left\{\frac{2}{(s + 1)(s + 2)^2}\right\} = 2e^{-t} - 4e^{-2t} - 2te^{-2t}

\]