IDNLearn.com is your go-to platform for finding reliable answers quickly. Ask your questions and receive detailed and reliable answers from our experienced and knowledgeable community members.
Sagot :
To determine why the function [tex]\( f(x) \)[/tex] is not continuous at [tex]\( x = 2 \)[/tex], let's go through the necessary steps regarding continuity for this specific function.
The function [tex]\( f(x) \)[/tex] is given by:
[tex]\[ f(x) = \frac{x^3 + 2x - 12}{8 \cos \left(\frac{1}{2} x\right) + 2 x^2} \][/tex]
To check for continuity at [tex]\( x = 2 \)[/tex], we need to verify the following conditions:
1. [tex]\( \lim_{x \to 2} f(x) \)[/tex] exists.
2. [tex]\( f(2) \)[/tex] is defined.
3. [tex]\( \lim_{x \to 2} f(x) = f(2) \)[/tex].
Let's analyze each required step:
Step 1: Determine [tex]\( \lim_{x \to 2} f(x) \)[/tex].
- To find this limit, we evaluate the expression
[tex]\[ \lim_{x \to 2} \frac{x^3 + 2x - 12}{8 \cos \left(\frac{1}{2} x\right) + 2 x^2}. \][/tex]
- The limit exists if we can compute this value and it converges to a real number.
Step 2: Determine if [tex]\( f(2) \)[/tex] is defined.
- Calculate the value of [tex]\( f(2) \)[/tex] by substituting [tex]\( x = 2 \)[/tex] into the function:
[tex]\[ f(2) = \frac{2^3 + 2 \cdot 2 - 12}{8 \cos \left(\frac{1}{2} \cdot 2\right) + 2 \cdot 2^2}. \][/tex]
- Simplify the numerator:
[tex]\[ 2^3 + 2 \cdot 2 - 12 = 8 + 4 - 12 = 0. \][/tex]
- Simplify the denominator:
[tex]\[ 8 \cos (1) + 2 \cdot 4 = 8 \cos(1) + 8. \][/tex]
Hence,
[tex]\[ f(2) = \frac{0}{8 \cos(1) + 8} = 0. \][/tex]
So, [tex]\( f(2) \)[/tex] is defined and equals 0.
Step 3: Compare [tex]\( \lim_{x \to 2} f(x) \)[/tex] and [tex]\( f(2) \)[/tex].
- From the above evaluation, we need to check if the limit obtained in step 1 equals [tex]\( f(2) \)[/tex].
- If both the limit (step 1) and the function value at [tex]\( x = 2 \)[/tex] (step 2) exist and are equal, i.e., [tex]\( \lim_{x \to 2} f(x) = f(2) \)[/tex], then we check for continuity.
After the steps outlined above, we conclude that:
- Both [tex]\( \lim_{x \to 2} f(x) \)[/tex] and [tex]\( f(2) \)[/tex] exist.
- Furthermore, the limit as [tex]\( x \to 2 \)[/tex] and the function value at [tex]\( x = 2 \)[/tex] are equal.
Therefore, the function [tex]\( f(x) \)[/tex] is continuous at [tex]\( x = 2 \)[/tex]. This corresponds to condition (D):
(D) Both [tex]\( \lim_{x \to 2} f(x) \)[/tex] and [tex]\( f(2) \)[/tex] exist, and [tex]\( \lim_{x \to 2} f(x) = f(2) \)[/tex].
Thus, the function [tex]\( f \)[/tex] is continuous at [tex]\( x = 2 \)[/tex].
The function [tex]\( f(x) \)[/tex] is given by:
[tex]\[ f(x) = \frac{x^3 + 2x - 12}{8 \cos \left(\frac{1}{2} x\right) + 2 x^2} \][/tex]
To check for continuity at [tex]\( x = 2 \)[/tex], we need to verify the following conditions:
1. [tex]\( \lim_{x \to 2} f(x) \)[/tex] exists.
2. [tex]\( f(2) \)[/tex] is defined.
3. [tex]\( \lim_{x \to 2} f(x) = f(2) \)[/tex].
Let's analyze each required step:
Step 1: Determine [tex]\( \lim_{x \to 2} f(x) \)[/tex].
- To find this limit, we evaluate the expression
[tex]\[ \lim_{x \to 2} \frac{x^3 + 2x - 12}{8 \cos \left(\frac{1}{2} x\right) + 2 x^2}. \][/tex]
- The limit exists if we can compute this value and it converges to a real number.
Step 2: Determine if [tex]\( f(2) \)[/tex] is defined.
- Calculate the value of [tex]\( f(2) \)[/tex] by substituting [tex]\( x = 2 \)[/tex] into the function:
[tex]\[ f(2) = \frac{2^3 + 2 \cdot 2 - 12}{8 \cos \left(\frac{1}{2} \cdot 2\right) + 2 \cdot 2^2}. \][/tex]
- Simplify the numerator:
[tex]\[ 2^3 + 2 \cdot 2 - 12 = 8 + 4 - 12 = 0. \][/tex]
- Simplify the denominator:
[tex]\[ 8 \cos (1) + 2 \cdot 4 = 8 \cos(1) + 8. \][/tex]
Hence,
[tex]\[ f(2) = \frac{0}{8 \cos(1) + 8} = 0. \][/tex]
So, [tex]\( f(2) \)[/tex] is defined and equals 0.
Step 3: Compare [tex]\( \lim_{x \to 2} f(x) \)[/tex] and [tex]\( f(2) \)[/tex].
- From the above evaluation, we need to check if the limit obtained in step 1 equals [tex]\( f(2) \)[/tex].
- If both the limit (step 1) and the function value at [tex]\( x = 2 \)[/tex] (step 2) exist and are equal, i.e., [tex]\( \lim_{x \to 2} f(x) = f(2) \)[/tex], then we check for continuity.
After the steps outlined above, we conclude that:
- Both [tex]\( \lim_{x \to 2} f(x) \)[/tex] and [tex]\( f(2) \)[/tex] exist.
- Furthermore, the limit as [tex]\( x \to 2 \)[/tex] and the function value at [tex]\( x = 2 \)[/tex] are equal.
Therefore, the function [tex]\( f(x) \)[/tex] is continuous at [tex]\( x = 2 \)[/tex]. This corresponds to condition (D):
(D) Both [tex]\( \lim_{x \to 2} f(x) \)[/tex] and [tex]\( f(2) \)[/tex] exist, and [tex]\( \lim_{x \to 2} f(x) = f(2) \)[/tex].
Thus, the function [tex]\( f \)[/tex] is continuous at [tex]\( x = 2 \)[/tex].
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Find the answers you need at IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.