Explore IDNLearn.com to discover insightful answers from experts and enthusiasts alike. Our platform is designed to provide accurate and comprehensive answers to any questions you may have.

Look at this table:

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-1 & 1 \\
\hline
0 & 2 \\
\hline
1 & 4 \\
\hline
2 & 8 \\
\hline
3 & 16 \\
\hline
\end{tabular}

Write a linear [tex]\((y = mx + b)\)[/tex], quadratic [tex]\(\left(y = ax^2\right)\)[/tex], or exponential [tex]\(\left(y = a(b)^x\right)\)[/tex] function that models the data.

[tex]\[ y = \][/tex]
[tex]\(\square\)[/tex]


Sagot :

To determine the function that models the given data, we will analyze the pattern in the values of [tex]\( y \)[/tex] as [tex]\( x \)[/tex] changes.

Here is the provided table:

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -1 & 1 \\ \hline 0 & 2 \\ \hline 1 & 4 \\ \hline 2 & 8 \\ \hline 3 & 16 \\ \hline \end{array} \][/tex]

We need to decide whether a linear, quadratic, or exponential function best fits the data.

1. Linear function ([tex]\( y = mx + b \)[/tex]):
- Calculate the differences in [tex]\( y \)[/tex] values:
1. [tex]\( 2 - 1 = 1 \)[/tex]
2. [tex]\( 4 - 2 = 2 \)[/tex]
3. [tex]\( 8 - 4 = 4 \)[/tex]
4. [tex]\( 16 - 8 = 8 \)[/tex]

The differences are not constant, so the data is not linear.

2. Quadratic function ([tex]\( y = ax^2 \)[/tex]):
- Calculate the second differences, which are the differences of the first differences:
1. [tex]\( 2 - 1 = 1 \)[/tex]
2. [tex]\( 4 - 2 = 2 \)[/tex]
3. [tex]\( 8 - 4 = 4 \)[/tex]
4. [tex]\( 16 - 8 = 8 \)[/tex]

The second differences are also not constant. Thus, the data does not fit a quadratic model.

3. Exponential function ([tex]\( y = a \cdot b^x \)[/tex]):
- Analyze the ratio between consecutive [tex]\( y \)[/tex] values:
1. [tex]\( \frac{2}{1} = 2 \)[/tex]
2. [tex]\( \frac{4}{2} = 2 \)[/tex]
3. [tex]\( \frac{8}{4} = 2 \)[/tex]
4. [tex]\( \frac{16}{8} = 2 \)[/tex]

The ratio between consecutive values is constant (2), indicating an exponential relationship.

We will construct an exponential function in the form [tex]\( y = a \cdot b^x \)[/tex]:

- From [tex]\( x = 0 \)[/tex] and [tex]\( y = 2 \)[/tex], we can see that:
[tex]\[ 2 = a \cdot b^0 \implies 2 = a \cdot 1 \implies a = 2 \][/tex]

- Next, we use the point [tex]\( (x = 1, y = 4) \)[/tex]:
[tex]\[ 4 = 2 \cdot b^1 \implies 4 = 2 \cdot b \implies b = 2 \][/tex]

Thus, the exponential function that models the data is:
[tex]\[ y = 2 \cdot (2^x) \][/tex]

So, the function is:
[tex]\[ y = 2 \cdot (2^x) \][/tex]