Join the IDNLearn.com community and start getting the answers you need today. Ask your questions and receive prompt, detailed answers from our experienced and knowledgeable community members.

You have been asked to design a rectangular box with a square base and an open top. The volume of the box must be 670 cm³. The cost of the material for the base is [tex]$0.90 per square centimeter, and the cost of the material for the sides is $[/tex]0.90 per square centimeter. Determine the dimensions of the box that will minimize the cost of manufacturing. What is the minimum cost? Give your answer in dollars, rounded to the nearest cent.

Provide your answer below:


Sagot :

To minimize the cost of manufacturing a rectangular box with a square base and open top, we need to determine the dimensions such that the total cost is minimized. Let’s proceed step-by-step:

### Step 1: Define variables
- Let [tex]\( x \)[/tex] be the length of one side of the square base (in cm).
- Let [tex]\( h \)[/tex] be the height of the box (in cm).

### Step 2: Volume constraint
The volume [tex]\( V \)[/tex] of the box is given by:
[tex]\[ V = x^2 \cdot h = 670 \][/tex]
Thus, we can express [tex]\( h \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ h = \frac{670}{x^2} \][/tex]

### Step 3: Cost calculations
The total cost is the sum of the cost of the base and the cost of the sides.

- Base cost: The area of the base is [tex]\( x^2 \)[/tex] square centimeters.
- Cost of the base: [tex]\( \text{cost\_base} = 0.90 \cdot x^2 \)[/tex]

- Sides cost: There are 4 sides, each with an area of [tex]\( x \cdot h \)[/tex] square centimeters.
- Total side area: [tex]\( 4 \cdot (x \cdot h) = 4 \cdot x \cdot \frac{670}{x^2} = \frac{2680}{x} \)[/tex]
- Cost of the sides: [tex]\( \text{cost\_sides} = 0.90 \cdot \frac{2680}{x} \)[/tex]

Thus, the total cost function [tex]\( C(x) \)[/tex] is:
[tex]\[ C(x) = 0.90 \cdot x^2 + 0.90 \cdot \frac{2680}{x} \][/tex]

### Step 4: Optimize the cost function
To find the value of [tex]\( x \)[/tex] that minimizes the cost, we need to find the critical points by differentiating [tex]\( C(x) \)[/tex] with respect to [tex]\( x \)[/tex] and setting the derivative to zero.

Differentiate [tex]\( C(x) \)[/tex]:

[tex]\[ C'(x) = \frac{d}{dx} \left( 0.90 \cdot x^2 + 0.90 \cdot \frac{2680}{x} \right) \][/tex]
[tex]\[ C'(x) = 0.90 \cdot 2x - 0.90 \cdot \frac{2680}{x^2} \][/tex]
[tex]\[ C'(x) = 1.80x - 0.90 \cdot \frac{2680}{x^2} \][/tex]
[tex]\[ C'(x) = 1.80x - \frac{2412}{x^2} \][/tex]

Set [tex]\( C'(x) = 0 \)[/tex] to find the critical points:
[tex]\[ 1.80x - \frac{2412}{x^2} = 0 \][/tex]
[tex]\[ 1.80x^3 = 2412 \][/tex]
[tex]\[ x^3 = \frac{2412}{1.80} = 1340 \][/tex]
[tex]\[ x = \sqrt[3]{1340} \][/tex]

Calculate [tex]\( x \)[/tex]:
[tex]\[ x \approx \sqrt[3]{1340} \approx 11.02 \, \text{cm} \][/tex]

### Step 5: Calculate [tex]\( h \)[/tex] and verify dimensions
Using [tex]\( x = 11.02 \)[/tex] cm, find [tex]\( h \)[/tex]:
[tex]\[ h = \frac{670}{(11.02)^2} \approx \frac{670}{121.44} \approx 5.52 \, \text{cm} \][/tex]

### Step 6: Calculate the minimum cost
Substitute [tex]\( x \)[/tex] and [tex]\( h \)[/tex] back into the cost function:
[tex]\[ \text{Cost} = 0.90 \cdot (11.02)^2 + 0.90 \cdot \frac{2680}{11.02} \][/tex]
[tex]\[ \text{Cost} \approx 0.90 \cdot 121.44 + 0.90 \cdot 243.25 \][/tex]
[tex]\[ \text{Cost} \approx 109.30 + 218.93 \][/tex]
[tex]\[ \text{Cost} \approx 328.23 \][/tex]

### Final Answer
The dimensions of the box that minimize the cost are:
- Side of the base [tex]\( x \approx 11.02 \)[/tex] cm
- Height [tex]\( h \approx 5.52 \)[/tex] cm

The minimum cost of manufacturing the box, rounded to the nearest cent, is:
[tex]\[ \boxed{$328.23} \][/tex]