IDNLearn.com connects you with a community of experts ready to answer your questions. Our platform is designed to provide accurate and comprehensive answers to any questions you may have.
Sagot :
To solve the problem of finding the minimum surface area for a rectangular box with a square base and an open top, where the volume is fixed at [tex]\(24 \, \text{cm}^3\)[/tex], we need to follow several steps.
### Step-by-Step Solution
1. Express the volume constraint:
The volume [tex]\(V\)[/tex] of the box is given by:
[tex]\[ V = x^2h \][/tex]
Where [tex]\(x\)[/tex] is the side of the square base and [tex]\(h\)[/tex] is the height of the box. We are given that:
[tex]\[ x^2h = 24 \][/tex]
2. Express [tex]\(h\)[/tex] in terms of [tex]\(x\)[/tex]:
Solve for [tex]\(h\)[/tex]:
[tex]\[ h = \frac{24}{x^2} \][/tex]
3. Express the surface area:
The surface area [tex]\(S\)[/tex] consists of the base ([tex]\(x^2\)[/tex]) and the four sides ([tex]\(4xh\)[/tex]), but does not include the top since it is open. So,
[tex]\[ S = x^2 + 4xh \][/tex]
Substitute [tex]\(h\)[/tex] from the volume constraint:
[tex]\[ S = x^2 + 4x \left(\frac{24}{x^2}\right) \][/tex]
Simplify the surface area function:
[tex]\[ S = x^2 + \frac{96}{x} \][/tex]
4. Find the critical points by differentiating:
To minimize [tex]\(S\)[/tex], find its derivative with respect to [tex]\(x\)[/tex]:
[tex]\[ \frac{dS}{dx} = 2x - \frac{96}{x^2} \][/tex]
5. Set the derivative to zero to find critical points:
[tex]\[ 2x - \frac{96}{x^2} = 0 \][/tex]
Solve for [tex]\(x\)[/tex]:
[tex]\[ 2x = \frac{96}{x^2} \][/tex]
[tex]\[ 2x^3 = 96 \][/tex]
[tex]\[ x^3 = 48 \][/tex]
[tex]\[ x = \sqrt[3]{48} = 2 \sqrt[3]{6} \][/tex]
6. Find the height [tex]\(h\)[/tex]:
Substitute the value of [tex]\(x\)[/tex] back into the volume equation:
[tex]\[ h = \frac{24}{x^2} \][/tex]
With [tex]\(x = 2 \sqrt[3]{6}\)[/tex]:
[tex]\[ h = \frac{24}{(2 \sqrt[3]{6})^2} \][/tex]
Simplify:
[tex]\[ h = \frac{24}{4 \sqrt[3]{36}} \][/tex]
[tex]\[ h = \frac{24}{4 \cdot 6^{2/3}} \][/tex]
[tex]\[ h = \frac{24}{4 \cdot 6^{2/3}} = \frac{6}{6^{2/3}} = \sqrt[3]{6} \][/tex]
7. Calculate the minimum surface area [tex]\(S\)[/tex]:
Substitute [tex]\(x = 2 \sqrt[3]{6}\)[/tex] and [tex]\(h = \sqrt[3]{6}\)[/tex] into the surface area function:
[tex]\[ S = (2 \sqrt[3]{6})^2 + 4(2 \sqrt[3]{6})(\sqrt[3]{6}) \][/tex]
Simplify the surface area expression:
[tex]\[ S = 4 \cdot 6^{2/3} + 8 \cdot 6^{2/3} \][/tex]
[tex]\[ S = 12 \cdot 6^{2/3} \][/tex]
Thus, the minimum surface area needed to construct the box is:
[tex]\[ \boxed{12 \cdot 6^{2/3}} \quad \text{cm}^2 \][/tex]
### Step-by-Step Solution
1. Express the volume constraint:
The volume [tex]\(V\)[/tex] of the box is given by:
[tex]\[ V = x^2h \][/tex]
Where [tex]\(x\)[/tex] is the side of the square base and [tex]\(h\)[/tex] is the height of the box. We are given that:
[tex]\[ x^2h = 24 \][/tex]
2. Express [tex]\(h\)[/tex] in terms of [tex]\(x\)[/tex]:
Solve for [tex]\(h\)[/tex]:
[tex]\[ h = \frac{24}{x^2} \][/tex]
3. Express the surface area:
The surface area [tex]\(S\)[/tex] consists of the base ([tex]\(x^2\)[/tex]) and the four sides ([tex]\(4xh\)[/tex]), but does not include the top since it is open. So,
[tex]\[ S = x^2 + 4xh \][/tex]
Substitute [tex]\(h\)[/tex] from the volume constraint:
[tex]\[ S = x^2 + 4x \left(\frac{24}{x^2}\right) \][/tex]
Simplify the surface area function:
[tex]\[ S = x^2 + \frac{96}{x} \][/tex]
4. Find the critical points by differentiating:
To minimize [tex]\(S\)[/tex], find its derivative with respect to [tex]\(x\)[/tex]:
[tex]\[ \frac{dS}{dx} = 2x - \frac{96}{x^2} \][/tex]
5. Set the derivative to zero to find critical points:
[tex]\[ 2x - \frac{96}{x^2} = 0 \][/tex]
Solve for [tex]\(x\)[/tex]:
[tex]\[ 2x = \frac{96}{x^2} \][/tex]
[tex]\[ 2x^3 = 96 \][/tex]
[tex]\[ x^3 = 48 \][/tex]
[tex]\[ x = \sqrt[3]{48} = 2 \sqrt[3]{6} \][/tex]
6. Find the height [tex]\(h\)[/tex]:
Substitute the value of [tex]\(x\)[/tex] back into the volume equation:
[tex]\[ h = \frac{24}{x^2} \][/tex]
With [tex]\(x = 2 \sqrt[3]{6}\)[/tex]:
[tex]\[ h = \frac{24}{(2 \sqrt[3]{6})^2} \][/tex]
Simplify:
[tex]\[ h = \frac{24}{4 \sqrt[3]{36}} \][/tex]
[tex]\[ h = \frac{24}{4 \cdot 6^{2/3}} \][/tex]
[tex]\[ h = \frac{24}{4 \cdot 6^{2/3}} = \frac{6}{6^{2/3}} = \sqrt[3]{6} \][/tex]
7. Calculate the minimum surface area [tex]\(S\)[/tex]:
Substitute [tex]\(x = 2 \sqrt[3]{6}\)[/tex] and [tex]\(h = \sqrt[3]{6}\)[/tex] into the surface area function:
[tex]\[ S = (2 \sqrt[3]{6})^2 + 4(2 \sqrt[3]{6})(\sqrt[3]{6}) \][/tex]
Simplify the surface area expression:
[tex]\[ S = 4 \cdot 6^{2/3} + 8 \cdot 6^{2/3} \][/tex]
[tex]\[ S = 12 \cdot 6^{2/3} \][/tex]
Thus, the minimum surface area needed to construct the box is:
[tex]\[ \boxed{12 \cdot 6^{2/3}} \quad \text{cm}^2 \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.