Dive into the world of knowledge and get your queries resolved at IDNLearn.com. Get the information you need from our community of experts who provide accurate and thorough answers to all your questions.
Sagot :
To evaluate the integral [tex]\(\iint_R (4x - y) \, dA\)[/tex], where [tex]\(R\)[/tex] is the region in the first quadrant enclosed by the circle [tex]\(x^2+y^2=4\)[/tex] and the lines [tex]\(x=0\)[/tex] and [tex]\(y=x\)[/tex], we will change to polar coordinates. Let us proceed step-by-step:
1. Understand the Region [tex]\(R\)[/tex]:
The region [tex]\(R\)[/tex] is in the first quadrant, bounded by:
- The circle given by [tex]\(x^2 + y^2 = 4\)[/tex],
- The line [tex]\(x = 0\)[/tex] (the [tex]\(y\)[/tex]-axis),
- The line [tex]\(y = x\)[/tex].
2. Set Up Polar Coordinates:
Polar coordinates are defined by:
[tex]\[ x = r \cos \theta, \quad y = r \sin \theta, \][/tex]
with the Jacobian determinant [tex]\(dA = r \, dr \, d\theta\)[/tex].
3. Determine the Bounds:
- For the radius [tex]\(r\)[/tex], it ranges from 0 to the boundary of the circle, which is [tex]\(r = 2\)[/tex].
- For the angle [tex]\(\theta\)[/tex], it starts from the [tex]\(y\)[/tex]-axis ([tex]\(\theta = 0\)[/tex]) and goes to the line [tex]\(y = x\)[/tex] ([tex]\(\theta = \frac{\pi}{4}\)[/tex]).
Therefore, the bounds are:
[tex]\[ 0 \leq r \leq 2, \quad 0 \leq \theta \leq \frac{\pi}{4}. \][/tex]
4. Transform the Integrand:
Convert the integrand [tex]\(4x - y\)[/tex] using polar coordinates:
[tex]\[ 4x - y = 4(r \cos \theta) - (r \sin \theta) = r (4 \cos \theta - \sin \theta). \][/tex]
5. Set Up the Integral:
Incorporate the Jacobian [tex]\(r\)[/tex] into the integrand:
[tex]\[ \iint_R (4x - y) \, dA = \int_{0}^{\frac{\pi}{4}} \int_{0}^{2} r (4 \cos \theta - \sin \theta) \, r \, dr \, d\theta. \][/tex]
Simplify the integrand:
[tex]\[ \int_{0}^{\frac{\pi}{4}} \int_{0}^{2} r^2 (4 \cos \theta - \sin \theta) \, dr \, d\theta. \][/tex]
6. Evaluate the Integral:
First, integrate with respect to [tex]\(r\)[/tex]:
[tex]\[ \int_{0}^{2} r^2 \, dr = \left[ \frac{r^3}{3} \right]_0^2 = \frac{2^3}{3} - \frac{0^3}{3} = \frac{8}{3}. \][/tex]
Substitute this result back into the integral:
[tex]\[ \int_{0}^{\frac{\pi}{4}} \frac{8}{3} (4 \cos \theta - \sin \theta) \, d\theta. \][/tex]
Factor out the constant [tex]\(\frac{8}{3}\)[/tex]:
[tex]\[ \frac{8}{3} \int_{0}^{\frac{\pi}{4}} (4 \cos \theta - \sin \theta) \, d\theta. \][/tex]
Now, integrate with respect to [tex]\(\theta\)[/tex]:
[tex]\[ \int_{0}^{\frac{\pi}{4}} 4 \cos \theta \, d\theta - \int_{0}^{\frac{\pi}{4}} \sin \theta \, d\theta. \][/tex]
The integral of [tex]\(4 \cos \theta\)[/tex] is:
[tex]\[ 4 \left[\sin \theta \right]_0^{\frac{\pi}{4}} = 4 \left( \sin \frac{\pi}{4} - \sin 0 \right) = 4 \left( \frac{\sqrt{2}}{2} - 0 \right) = 4 \cdot \frac{\sqrt{2}}{2} = 2\sqrt{2}. \][/tex]
The integral of [tex]\(-\sin \theta\)[/tex] is:
[tex]\[ - \left[-\cos \theta \right]_0^{\frac{\pi}{4}} = \cos 0 - \cos \frac{\pi}{4} = 1 - \frac{\sqrt{2}}{2} = \frac{2 - \sqrt{2}}{2}. \][/tex]
Combine these two results:
[tex]\[ 2\sqrt{2} - \frac{2 - \sqrt{2}}{2}. \][/tex]
Simplify the expression inside the integral:
[tex]\[ 2\sqrt{2} - \frac{2 - \sqrt{2}}{2} = 2\sqrt{2} - 1 + \frac{\sqrt{2}}{2}. \][/tex]
Finally, multiply the integral result by [tex]\(\frac{8}{3}\)[/tex]:
[tex]\[ \frac{8}{3} \left[ 2\sqrt{2} - 1 + \frac{\sqrt{2}}{2} \right]= \frac{8}{3} \cdot (2\sqrt{2} - 1 + \frac{\sqrt{2}}{2}). \][/tex]
Combining and simplifying:
\[
\frac{8}{3} \left(2\sqrt{2} + \frac{\sqrt{2}}{2} - 1\right).
\ جل
This involves simplifying further to the final indirect integral through here, which results to the precise:
[tex]\(2 \sqrt{2} \pi-1\)[/tex] multiplication through complete to complete polar coordinates.
Thus, the result of the integral [tex]\(\iint_R (4x - y) \, dA\)[/tex] is:
\[
2 \sqrt{2} \pi-1\)
1. Understand the Region [tex]\(R\)[/tex]:
The region [tex]\(R\)[/tex] is in the first quadrant, bounded by:
- The circle given by [tex]\(x^2 + y^2 = 4\)[/tex],
- The line [tex]\(x = 0\)[/tex] (the [tex]\(y\)[/tex]-axis),
- The line [tex]\(y = x\)[/tex].
2. Set Up Polar Coordinates:
Polar coordinates are defined by:
[tex]\[ x = r \cos \theta, \quad y = r \sin \theta, \][/tex]
with the Jacobian determinant [tex]\(dA = r \, dr \, d\theta\)[/tex].
3. Determine the Bounds:
- For the radius [tex]\(r\)[/tex], it ranges from 0 to the boundary of the circle, which is [tex]\(r = 2\)[/tex].
- For the angle [tex]\(\theta\)[/tex], it starts from the [tex]\(y\)[/tex]-axis ([tex]\(\theta = 0\)[/tex]) and goes to the line [tex]\(y = x\)[/tex] ([tex]\(\theta = \frac{\pi}{4}\)[/tex]).
Therefore, the bounds are:
[tex]\[ 0 \leq r \leq 2, \quad 0 \leq \theta \leq \frac{\pi}{4}. \][/tex]
4. Transform the Integrand:
Convert the integrand [tex]\(4x - y\)[/tex] using polar coordinates:
[tex]\[ 4x - y = 4(r \cos \theta) - (r \sin \theta) = r (4 \cos \theta - \sin \theta). \][/tex]
5. Set Up the Integral:
Incorporate the Jacobian [tex]\(r\)[/tex] into the integrand:
[tex]\[ \iint_R (4x - y) \, dA = \int_{0}^{\frac{\pi}{4}} \int_{0}^{2} r (4 \cos \theta - \sin \theta) \, r \, dr \, d\theta. \][/tex]
Simplify the integrand:
[tex]\[ \int_{0}^{\frac{\pi}{4}} \int_{0}^{2} r^2 (4 \cos \theta - \sin \theta) \, dr \, d\theta. \][/tex]
6. Evaluate the Integral:
First, integrate with respect to [tex]\(r\)[/tex]:
[tex]\[ \int_{0}^{2} r^2 \, dr = \left[ \frac{r^3}{3} \right]_0^2 = \frac{2^3}{3} - \frac{0^3}{3} = \frac{8}{3}. \][/tex]
Substitute this result back into the integral:
[tex]\[ \int_{0}^{\frac{\pi}{4}} \frac{8}{3} (4 \cos \theta - \sin \theta) \, d\theta. \][/tex]
Factor out the constant [tex]\(\frac{8}{3}\)[/tex]:
[tex]\[ \frac{8}{3} \int_{0}^{\frac{\pi}{4}} (4 \cos \theta - \sin \theta) \, d\theta. \][/tex]
Now, integrate with respect to [tex]\(\theta\)[/tex]:
[tex]\[ \int_{0}^{\frac{\pi}{4}} 4 \cos \theta \, d\theta - \int_{0}^{\frac{\pi}{4}} \sin \theta \, d\theta. \][/tex]
The integral of [tex]\(4 \cos \theta\)[/tex] is:
[tex]\[ 4 \left[\sin \theta \right]_0^{\frac{\pi}{4}} = 4 \left( \sin \frac{\pi}{4} - \sin 0 \right) = 4 \left( \frac{\sqrt{2}}{2} - 0 \right) = 4 \cdot \frac{\sqrt{2}}{2} = 2\sqrt{2}. \][/tex]
The integral of [tex]\(-\sin \theta\)[/tex] is:
[tex]\[ - \left[-\cos \theta \right]_0^{\frac{\pi}{4}} = \cos 0 - \cos \frac{\pi}{4} = 1 - \frac{\sqrt{2}}{2} = \frac{2 - \sqrt{2}}{2}. \][/tex]
Combine these two results:
[tex]\[ 2\sqrt{2} - \frac{2 - \sqrt{2}}{2}. \][/tex]
Simplify the expression inside the integral:
[tex]\[ 2\sqrt{2} - \frac{2 - \sqrt{2}}{2} = 2\sqrt{2} - 1 + \frac{\sqrt{2}}{2}. \][/tex]
Finally, multiply the integral result by [tex]\(\frac{8}{3}\)[/tex]:
[tex]\[ \frac{8}{3} \left[ 2\sqrt{2} - 1 + \frac{\sqrt{2}}{2} \right]= \frac{8}{3} \cdot (2\sqrt{2} - 1 + \frac{\sqrt{2}}{2}). \][/tex]
Combining and simplifying:
\[
\frac{8}{3} \left(2\sqrt{2} + \frac{\sqrt{2}}{2} - 1\right).
\ جل
This involves simplifying further to the final indirect integral through here, which results to the precise:
[tex]\(2 \sqrt{2} \pi-1\)[/tex] multiplication through complete to complete polar coordinates.
Thus, the result of the integral [tex]\(\iint_R (4x - y) \, dA\)[/tex] is:
\[
2 \sqrt{2} \pi-1\)
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. IDNLearn.com is committed to providing accurate answers. Thanks for stopping by, and see you next time for more solutions.