Discover new information and get your questions answered with IDNLearn.com. Discover reliable and timely information on any topic from our network of experienced professionals.
Sagot :
To solve the inequality [tex]\( f(x) = x^2 + 4x - 45 \geq 0 \)[/tex], we need to find the regions where the function [tex]\( f(x) \)[/tex] is greater than or equal to zero.
### Step-by-Step Solution:
1. Find the roots of the quadratic equation:
To determine where the function changes sign, first find the roots of the quadratic equation [tex]\( f(x) = x^2 + 4x - 45 = 0 \)[/tex]. These are the points where the function intersects the x-axis.
2. Solve the quadratic equation [tex]\( x^2 + 4x - 45 = 0 \)[/tex]:
This can be solved using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], the coefficients are:
[tex]\[ a = 1, \quad b = 4, \quad c = -45 \][/tex]
Plugging in the values, we get:
[tex]\[ x = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot (-45)}}{2 \cdot 1} \][/tex]
This simplifies to:
[tex]\[ x = \frac{-4 \pm \sqrt{16 + 180}}{2} \][/tex]
[tex]\[ x = \frac{-4 \pm \sqrt{196}}{2} \][/tex]
[tex]\[ x = \frac{-4 \pm 14}{2} \][/tex]
Thus, we have two roots:
[tex]\[ x = \frac{-4 + 14}{2} = 5 \][/tex]
[tex]\[ x = \frac{-4 - 14}{2} = -9 \][/tex]
3. Critical points and test intervals:
The roots [tex]\( x = -9 \)[/tex] and [tex]\( x = 5 \)[/tex] are critical points. We will test the intervals around these points to determine where the function is non-negative.
The intervals to test are:
- [tex]\( x \leq -9 \)[/tex]
- [tex]\( -9 \leq x \leq 5 \)[/tex]
- [tex]\( x \geq 5 \)[/tex]
4. Test the intervals:
- For [tex]\( x \leq -9 \)[/tex]:
Choose a point in this interval, such as [tex]\( x = -10 \)[/tex]:
[tex]\[ f(-10) = (-10)^2 + 4(-10) - 45 = 100 - 40 - 45 = 15 \][/tex]
Since [tex]\( f(-10) > 0 \)[/tex], [tex]\( f(x) \)[/tex] is non-negative in the interval [tex]\( x \leq -9 \)[/tex].
- For [tex]\( -9 \leq x \leq 5 \)[/tex]:
Choose a point in this interval, such as [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 0^2 + 4(0) - 45 = -45 \][/tex]
Since [tex]\( f(0) < 0 \)[/tex], [tex]\( f(x) \)[/tex] is negative in the interval [tex]\( -9 \leq x \leq 5 \)[/tex].
- For [tex]\( x \geq 5 \)[/tex]:
Choose a point in this interval, such as [tex]\( x = 6 \)[/tex]:
[tex]\[ f(6) = 6^2 + 4(6) - 45 = 36 + 24 - 45 = 15 \][/tex]
Since [tex]\( f(6) > 0 \)[/tex], [tex]\( f(x) \)[/tex] is non-negative in the interval [tex]\( x \geq 5 \)[/tex].
5. Conclusion:
The function [tex]\( f(x) = x^2 + 4x - 45 \)[/tex] is non-negative in the intervals where [tex]\( x \leq -9 \)[/tex] and [tex]\( x \geq 5 \)[/tex]. Thus, the solution to the inequality [tex]\( f(x) \geq 0 \)[/tex] is:
[tex]\[ x \in (-\infty, -9] \cup [5, \infty) \][/tex]
Therefore, the regions where the quadratic function is greater than or equal to zero are [tex]\( x \leq -9 \)[/tex] and [tex]\( x \geq 5 \)[/tex].
### Step-by-Step Solution:
1. Find the roots of the quadratic equation:
To determine where the function changes sign, first find the roots of the quadratic equation [tex]\( f(x) = x^2 + 4x - 45 = 0 \)[/tex]. These are the points where the function intersects the x-axis.
2. Solve the quadratic equation [tex]\( x^2 + 4x - 45 = 0 \)[/tex]:
This can be solved using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], the coefficients are:
[tex]\[ a = 1, \quad b = 4, \quad c = -45 \][/tex]
Plugging in the values, we get:
[tex]\[ x = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot (-45)}}{2 \cdot 1} \][/tex]
This simplifies to:
[tex]\[ x = \frac{-4 \pm \sqrt{16 + 180}}{2} \][/tex]
[tex]\[ x = \frac{-4 \pm \sqrt{196}}{2} \][/tex]
[tex]\[ x = \frac{-4 \pm 14}{2} \][/tex]
Thus, we have two roots:
[tex]\[ x = \frac{-4 + 14}{2} = 5 \][/tex]
[tex]\[ x = \frac{-4 - 14}{2} = -9 \][/tex]
3. Critical points and test intervals:
The roots [tex]\( x = -9 \)[/tex] and [tex]\( x = 5 \)[/tex] are critical points. We will test the intervals around these points to determine where the function is non-negative.
The intervals to test are:
- [tex]\( x \leq -9 \)[/tex]
- [tex]\( -9 \leq x \leq 5 \)[/tex]
- [tex]\( x \geq 5 \)[/tex]
4. Test the intervals:
- For [tex]\( x \leq -9 \)[/tex]:
Choose a point in this interval, such as [tex]\( x = -10 \)[/tex]:
[tex]\[ f(-10) = (-10)^2 + 4(-10) - 45 = 100 - 40 - 45 = 15 \][/tex]
Since [tex]\( f(-10) > 0 \)[/tex], [tex]\( f(x) \)[/tex] is non-negative in the interval [tex]\( x \leq -9 \)[/tex].
- For [tex]\( -9 \leq x \leq 5 \)[/tex]:
Choose a point in this interval, such as [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 0^2 + 4(0) - 45 = -45 \][/tex]
Since [tex]\( f(0) < 0 \)[/tex], [tex]\( f(x) \)[/tex] is negative in the interval [tex]\( -9 \leq x \leq 5 \)[/tex].
- For [tex]\( x \geq 5 \)[/tex]:
Choose a point in this interval, such as [tex]\( x = 6 \)[/tex]:
[tex]\[ f(6) = 6^2 + 4(6) - 45 = 36 + 24 - 45 = 15 \][/tex]
Since [tex]\( f(6) > 0 \)[/tex], [tex]\( f(x) \)[/tex] is non-negative in the interval [tex]\( x \geq 5 \)[/tex].
5. Conclusion:
The function [tex]\( f(x) = x^2 + 4x - 45 \)[/tex] is non-negative in the intervals where [tex]\( x \leq -9 \)[/tex] and [tex]\( x \geq 5 \)[/tex]. Thus, the solution to the inequality [tex]\( f(x) \geq 0 \)[/tex] is:
[tex]\[ x \in (-\infty, -9] \cup [5, \infty) \][/tex]
Therefore, the regions where the quadratic function is greater than or equal to zero are [tex]\( x \leq -9 \)[/tex] and [tex]\( x \geq 5 \)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. IDNLearn.com is dedicated to providing accurate answers. Thank you for visiting, and see you next time for more solutions.