From science to arts, IDNLearn.com has the answers to all your questions. Get step-by-step guidance for all your technical questions from our knowledgeable community members.
Sagot :
To solve the inequality [tex]\( f(x) = x^2 + 4x - 45 \geq 0 \)[/tex], we need to find the regions where the function [tex]\( f(x) \)[/tex] is greater than or equal to zero.
### Step-by-Step Solution:
1. Find the roots of the quadratic equation:
To determine where the function changes sign, first find the roots of the quadratic equation [tex]\( f(x) = x^2 + 4x - 45 = 0 \)[/tex]. These are the points where the function intersects the x-axis.
2. Solve the quadratic equation [tex]\( x^2 + 4x - 45 = 0 \)[/tex]:
This can be solved using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], the coefficients are:
[tex]\[ a = 1, \quad b = 4, \quad c = -45 \][/tex]
Plugging in the values, we get:
[tex]\[ x = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot (-45)}}{2 \cdot 1} \][/tex]
This simplifies to:
[tex]\[ x = \frac{-4 \pm \sqrt{16 + 180}}{2} \][/tex]
[tex]\[ x = \frac{-4 \pm \sqrt{196}}{2} \][/tex]
[tex]\[ x = \frac{-4 \pm 14}{2} \][/tex]
Thus, we have two roots:
[tex]\[ x = \frac{-4 + 14}{2} = 5 \][/tex]
[tex]\[ x = \frac{-4 - 14}{2} = -9 \][/tex]
3. Critical points and test intervals:
The roots [tex]\( x = -9 \)[/tex] and [tex]\( x = 5 \)[/tex] are critical points. We will test the intervals around these points to determine where the function is non-negative.
The intervals to test are:
- [tex]\( x \leq -9 \)[/tex]
- [tex]\( -9 \leq x \leq 5 \)[/tex]
- [tex]\( x \geq 5 \)[/tex]
4. Test the intervals:
- For [tex]\( x \leq -9 \)[/tex]:
Choose a point in this interval, such as [tex]\( x = -10 \)[/tex]:
[tex]\[ f(-10) = (-10)^2 + 4(-10) - 45 = 100 - 40 - 45 = 15 \][/tex]
Since [tex]\( f(-10) > 0 \)[/tex], [tex]\( f(x) \)[/tex] is non-negative in the interval [tex]\( x \leq -9 \)[/tex].
- For [tex]\( -9 \leq x \leq 5 \)[/tex]:
Choose a point in this interval, such as [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 0^2 + 4(0) - 45 = -45 \][/tex]
Since [tex]\( f(0) < 0 \)[/tex], [tex]\( f(x) \)[/tex] is negative in the interval [tex]\( -9 \leq x \leq 5 \)[/tex].
- For [tex]\( x \geq 5 \)[/tex]:
Choose a point in this interval, such as [tex]\( x = 6 \)[/tex]:
[tex]\[ f(6) = 6^2 + 4(6) - 45 = 36 + 24 - 45 = 15 \][/tex]
Since [tex]\( f(6) > 0 \)[/tex], [tex]\( f(x) \)[/tex] is non-negative in the interval [tex]\( x \geq 5 \)[/tex].
5. Conclusion:
The function [tex]\( f(x) = x^2 + 4x - 45 \)[/tex] is non-negative in the intervals where [tex]\( x \leq -9 \)[/tex] and [tex]\( x \geq 5 \)[/tex]. Thus, the solution to the inequality [tex]\( f(x) \geq 0 \)[/tex] is:
[tex]\[ x \in (-\infty, -9] \cup [5, \infty) \][/tex]
Therefore, the regions where the quadratic function is greater than or equal to zero are [tex]\( x \leq -9 \)[/tex] and [tex]\( x \geq 5 \)[/tex].
### Step-by-Step Solution:
1. Find the roots of the quadratic equation:
To determine where the function changes sign, first find the roots of the quadratic equation [tex]\( f(x) = x^2 + 4x - 45 = 0 \)[/tex]. These are the points where the function intersects the x-axis.
2. Solve the quadratic equation [tex]\( x^2 + 4x - 45 = 0 \)[/tex]:
This can be solved using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
For the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], the coefficients are:
[tex]\[ a = 1, \quad b = 4, \quad c = -45 \][/tex]
Plugging in the values, we get:
[tex]\[ x = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot (-45)}}{2 \cdot 1} \][/tex]
This simplifies to:
[tex]\[ x = \frac{-4 \pm \sqrt{16 + 180}}{2} \][/tex]
[tex]\[ x = \frac{-4 \pm \sqrt{196}}{2} \][/tex]
[tex]\[ x = \frac{-4 \pm 14}{2} \][/tex]
Thus, we have two roots:
[tex]\[ x = \frac{-4 + 14}{2} = 5 \][/tex]
[tex]\[ x = \frac{-4 - 14}{2} = -9 \][/tex]
3. Critical points and test intervals:
The roots [tex]\( x = -9 \)[/tex] and [tex]\( x = 5 \)[/tex] are critical points. We will test the intervals around these points to determine where the function is non-negative.
The intervals to test are:
- [tex]\( x \leq -9 \)[/tex]
- [tex]\( -9 \leq x \leq 5 \)[/tex]
- [tex]\( x \geq 5 \)[/tex]
4. Test the intervals:
- For [tex]\( x \leq -9 \)[/tex]:
Choose a point in this interval, such as [tex]\( x = -10 \)[/tex]:
[tex]\[ f(-10) = (-10)^2 + 4(-10) - 45 = 100 - 40 - 45 = 15 \][/tex]
Since [tex]\( f(-10) > 0 \)[/tex], [tex]\( f(x) \)[/tex] is non-negative in the interval [tex]\( x \leq -9 \)[/tex].
- For [tex]\( -9 \leq x \leq 5 \)[/tex]:
Choose a point in this interval, such as [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 0^2 + 4(0) - 45 = -45 \][/tex]
Since [tex]\( f(0) < 0 \)[/tex], [tex]\( f(x) \)[/tex] is negative in the interval [tex]\( -9 \leq x \leq 5 \)[/tex].
- For [tex]\( x \geq 5 \)[/tex]:
Choose a point in this interval, such as [tex]\( x = 6 \)[/tex]:
[tex]\[ f(6) = 6^2 + 4(6) - 45 = 36 + 24 - 45 = 15 \][/tex]
Since [tex]\( f(6) > 0 \)[/tex], [tex]\( f(x) \)[/tex] is non-negative in the interval [tex]\( x \geq 5 \)[/tex].
5. Conclusion:
The function [tex]\( f(x) = x^2 + 4x - 45 \)[/tex] is non-negative in the intervals where [tex]\( x \leq -9 \)[/tex] and [tex]\( x \geq 5 \)[/tex]. Thus, the solution to the inequality [tex]\( f(x) \geq 0 \)[/tex] is:
[tex]\[ x \in (-\infty, -9] \cup [5, \infty) \][/tex]
Therefore, the regions where the quadratic function is greater than or equal to zero are [tex]\( x \leq -9 \)[/tex] and [tex]\( x \geq 5 \)[/tex].
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.