Find the best solutions to your problems with the help of IDNLearn.com. Ask any question and get a detailed, reliable answer from our community of experts.
Sagot :
To find the maximum value of [tex]\( P = 4x + 5y \)[/tex] subject to the constraints:
[tex]\[ \begin{cases} x + 3y \leq 13 \\ 3x + 2y \leq 25 \\ x \geq 0 \\ y \geq 0 \end{cases} \][/tex]
we follow these steps:
1. Identify the constraint lines:
- [tex]\( x + 3y = 13 \)[/tex]
- [tex]\( 3x + 2y = 25 \)[/tex]
2. Graph the inequality constraints:
- [tex]\( x + 3y \leq 13 \)[/tex]
- [tex]\( 3x + 2y \leq 25 \)[/tex]
3. Determine the feasible region:
Plot the lines and find the region that satisfies all the constraints simultaneously, including [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex].
4. Find the vertices of the feasible region:
Calculate the points of intersection of the lines, including where they intersect the axes.
- Intersection of [tex]\( x + 3y = 13 \)[/tex] and [tex]\( x \)[/tex]-axis: Set [tex]\( y = 0 \)[/tex], solve [tex]\( x = 13 \)[/tex]. Point [tex]\( (13, 0) \)[/tex].
- Intersection of [tex]\( x + 3y = 13 \)[/tex] and [tex]\( y \)[/tex]-axis: Set [tex]\( x = 0 \)[/tex], solve [tex]\( 3y = 13 \)[/tex], [tex]\( y = \frac{13}{3} \approx 4.33 \)[/tex]. Point [tex]\( (0, \frac{13}{3}) \)[/tex].
- Intersection of [tex]\( 3x + 2y = 25 \)[/tex] and [tex]\( x \)[/tex]-axis: Set [tex]\( y = 0 \)[/tex], solve [tex]\( 3x = 25 \)[/tex], [tex]\( x \approx 8.33 \)[/tex]. Point [tex]\( ( \frac{25}{3}, 0) \approx (8.33, 0) \)[/tex].
- Intersection of [tex]\( 3x + 2y = 25 \)[/tex] and [tex]\( y \)[/tex]-axis: Set [tex]\( x = 0 \)[/tex], solve [tex]\( 2y = 25 \)[/tex], [tex]\( y = 12.5 \)[/tex]. Point [tex]\( (0, 12.5) \)[/tex].
- Intersection of [tex]\( x + 3y = 13 \)[/tex] and [tex]\( 3x + 2y = 25 \)[/tex]:
[tex]\[ \begin{cases} x + 3y = 13 \\ 3x + 2y = 25 \end{cases} \][/tex]
Solve the system of equations:
[tex]\[ \text{Multiply the first equation by 3: } 3x + 9y = 39 \][/tex]
[tex]\[ \text{Subtract the second equation from the first: } (3x + 9y) - (3x + 2y) = 39 - 25 \][/tex]
[tex]\[ 7y = 14 \implies y = 2 \][/tex]
Substituting [tex]\( y = 2 \)[/tex] into the first equation:
[tex]\[ x + 3(2) = 13 \implies x + 6 = 13 \implies x = 7 \][/tex]
Intersection point is [tex]\( (7, 2) \)[/tex].
5. Evaluate [tex]\( P = 4x + 5y \)[/tex] at each vertex:
- At [tex]\( (13, 0) \)[/tex]: [tex]\( P = 4(13) + 5(0) = 52 \)[/tex]
- At [tex]\( (0, \frac{13}{3}) \)[/tex]: [tex]\( P = 4(0) + 5(\frac{13}{3}) \approx 21.67 \)[/tex]
- At [tex]\( (\frac{25}{3}, 0) \)[/tex]: [tex]\( P = 4(\frac{25}{3}) + 5(0) \approx 33.33 \)[/tex]
- At [tex]\( (0, 12.5) \)[/tex]: [tex]\( P = 4(0) + 5(12.5) = 62.5 \)[/tex]
- At [tex]\( (7, 2) \)[/tex]: [tex]\( P = 4(7) + 5(2) = 28 + 10 = 38 \)[/tex]
6. Select the maximum value:
The maximum value of [tex]\( P \)[/tex] among these points occurs at [tex]\( (7, 2) \)[/tex] and is:
[tex]\[ P = 38 \][/tex]
So, the maximum value of [tex]\( P = 4x + 5y \)[/tex] subject to the given constraints is [tex]\( \boxed{38} \)[/tex].
[tex]\[ \begin{cases} x + 3y \leq 13 \\ 3x + 2y \leq 25 \\ x \geq 0 \\ y \geq 0 \end{cases} \][/tex]
we follow these steps:
1. Identify the constraint lines:
- [tex]\( x + 3y = 13 \)[/tex]
- [tex]\( 3x + 2y = 25 \)[/tex]
2. Graph the inequality constraints:
- [tex]\( x + 3y \leq 13 \)[/tex]
- [tex]\( 3x + 2y \leq 25 \)[/tex]
3. Determine the feasible region:
Plot the lines and find the region that satisfies all the constraints simultaneously, including [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex].
4. Find the vertices of the feasible region:
Calculate the points of intersection of the lines, including where they intersect the axes.
- Intersection of [tex]\( x + 3y = 13 \)[/tex] and [tex]\( x \)[/tex]-axis: Set [tex]\( y = 0 \)[/tex], solve [tex]\( x = 13 \)[/tex]. Point [tex]\( (13, 0) \)[/tex].
- Intersection of [tex]\( x + 3y = 13 \)[/tex] and [tex]\( y \)[/tex]-axis: Set [tex]\( x = 0 \)[/tex], solve [tex]\( 3y = 13 \)[/tex], [tex]\( y = \frac{13}{3} \approx 4.33 \)[/tex]. Point [tex]\( (0, \frac{13}{3}) \)[/tex].
- Intersection of [tex]\( 3x + 2y = 25 \)[/tex] and [tex]\( x \)[/tex]-axis: Set [tex]\( y = 0 \)[/tex], solve [tex]\( 3x = 25 \)[/tex], [tex]\( x \approx 8.33 \)[/tex]. Point [tex]\( ( \frac{25}{3}, 0) \approx (8.33, 0) \)[/tex].
- Intersection of [tex]\( 3x + 2y = 25 \)[/tex] and [tex]\( y \)[/tex]-axis: Set [tex]\( x = 0 \)[/tex], solve [tex]\( 2y = 25 \)[/tex], [tex]\( y = 12.5 \)[/tex]. Point [tex]\( (0, 12.5) \)[/tex].
- Intersection of [tex]\( x + 3y = 13 \)[/tex] and [tex]\( 3x + 2y = 25 \)[/tex]:
[tex]\[ \begin{cases} x + 3y = 13 \\ 3x + 2y = 25 \end{cases} \][/tex]
Solve the system of equations:
[tex]\[ \text{Multiply the first equation by 3: } 3x + 9y = 39 \][/tex]
[tex]\[ \text{Subtract the second equation from the first: } (3x + 9y) - (3x + 2y) = 39 - 25 \][/tex]
[tex]\[ 7y = 14 \implies y = 2 \][/tex]
Substituting [tex]\( y = 2 \)[/tex] into the first equation:
[tex]\[ x + 3(2) = 13 \implies x + 6 = 13 \implies x = 7 \][/tex]
Intersection point is [tex]\( (7, 2) \)[/tex].
5. Evaluate [tex]\( P = 4x + 5y \)[/tex] at each vertex:
- At [tex]\( (13, 0) \)[/tex]: [tex]\( P = 4(13) + 5(0) = 52 \)[/tex]
- At [tex]\( (0, \frac{13}{3}) \)[/tex]: [tex]\( P = 4(0) + 5(\frac{13}{3}) \approx 21.67 \)[/tex]
- At [tex]\( (\frac{25}{3}, 0) \)[/tex]: [tex]\( P = 4(\frac{25}{3}) + 5(0) \approx 33.33 \)[/tex]
- At [tex]\( (0, 12.5) \)[/tex]: [tex]\( P = 4(0) + 5(12.5) = 62.5 \)[/tex]
- At [tex]\( (7, 2) \)[/tex]: [tex]\( P = 4(7) + 5(2) = 28 + 10 = 38 \)[/tex]
6. Select the maximum value:
The maximum value of [tex]\( P \)[/tex] among these points occurs at [tex]\( (7, 2) \)[/tex] and is:
[tex]\[ P = 38 \][/tex]
So, the maximum value of [tex]\( P = 4x + 5y \)[/tex] subject to the given constraints is [tex]\( \boxed{38} \)[/tex].
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.