IDNLearn.com is designed to help you find reliable answers quickly and easily. Get the information you need from our community of experts, who provide detailed and trustworthy answers.
Sagot :
Let's tackle both parts of this problem step-by-step.
### (i) Balancing the Redox Equation Using Ion-Electron Method
First, let’s balance the given reaction using the ion-electron method. The reaction in question is:
[tex]\[ Zn + NO_3^- \rightarrow Zn^{2+} + NH_4^+ \][/tex]
Step 1: Write the oxidation and reduction half-reactions.
Oxidation half-reaction:
[tex]\[ Zn \rightarrow Zn^{2+} + 2e^- \][/tex]
Reduction half-reaction:
[tex]\[ NO_3^- + 10H^+ + 8e^- \rightarrow NH_4^+ + 3H_2O \][/tex]
Step 2: Balance the atoms other than oxygen and hydrogen.
The zinc atoms in the oxidation half-reaction are already balanced.
Step 3: Balance oxygen atoms by adding [tex]\(H_2O\)[/tex] molecules.
In the reduction half-reaction:
There are no changes needed since it is already balanced for oxygen atoms.
Step 4: Balance hydrogen atoms by adding [tex]\(H^+\)[/tex] ions.
Again, the reduction half-reaction:
[tex]\[ NO_3^- + 10H^+ + 8e^- \rightarrow NH_4^+ + 3H_2O \][/tex]
The reduction half-reaction is balanced for hydrogen.
Step 5: Balance the charges by adding electrons.
The oxidation half-reaction:
[tex]\[ Zn \rightarrow Zn^{2+} + 2e^- \][/tex]
The reduction half-reaction:
[tex]\[ NO_3^- + 10H^+ + 8e^- \rightarrow NH_4^+ + 3H_2O \][/tex]
Step 6: Ensure the number of electrons lost in oxidation equals the number of electrons gained in reduction.
To balance the electrons, we need to multiply the oxidation half-reaction by 4 and the reduction half-reaction by 1:
[tex]\[ 4(Zn \rightarrow Zn^{2+} + 2e^-) \][/tex]
[tex]\[ NO_3^- + 10H^+ + 8e^- \rightarrow NH_4^+ + 3H_2O \][/tex]
Each side of the reaction should now have 8 electrons:
[tex]\[ 4Zn \rightarrow 4Zn^{2+} + 8e^- \][/tex]
[tex]\[ NO_3^- + 10H^+ + 8e^- \rightarrow NH_4^+ + 3H_2O \][/tex]
Step 7: Combine the half-reactions and simplify.
Combining these, we get:
[tex]\[ 4Zn + NO_3^- + 10H^+ \rightarrow 4Zn^{2+} + NH_4^+ + 3H_2O \][/tex]
This is the balanced redox equation.
### (ii) Calculate the Percentage Purity of Zinc Sample
Given:
- Mass of impure zinc sample: [tex]\(4.0 \text{ g}\)[/tex]
- Volume of [tex]\( HNO_3 \)[/tex]: [tex]\( 25.0 \text{ mL} \)[/tex]
- Molarity of [tex]\( HNO_3 \)[/tex]: [tex]\(0.5 \text{ M}\)[/tex]
Step 1: Convert the volume of [tex]\( HNO_3 \)[/tex] from milliliters to liters.
[tex]\[ \text{Volume of } HNO_3 \text{ in L} = \frac{25.0 \text{ mL}}{1000} = 0.025 \text{ L} \][/tex]
Step 2: Calculate the moles of [tex]\( HNO_3 \)[/tex].
[tex]\[ \text{Moles of } HNO_3 = \text{Volume in L} \times \text{Molarity} = 0.025 \text{ L} \times 0.5 \text{ M} = 0.0125 \text{ mol} \][/tex]
Step 3: Determine the moles of [tex]\( Zn \)[/tex] that reacts.
From the balanced redox reaction:
[tex]\[ Zn + 2NO_3^- + 4H^+ \rightarrow Zn^{2+} + 2NO_2 + 2H_2O \][/tex]
We see that 1 mole of [tex]\( Zn \)[/tex] reacts with 2 moles of [tex]\( HNO_3 \)[/tex].
[tex]\[ \text{Moles of } Zn = \frac{\text{Moles of } HNO_3}{2} = \frac{0.0125}{2} = 0.00625 \text{ mol} \][/tex]
Step 4: Calculate the mass of pure [tex]\( Zn \)[/tex] that reacted.
[tex]\[ \text{Molar mass of } Zn = 65.38 \text{ g/mol} \][/tex]
[tex]\[ \text{Mass of pure } Zn = \text{Moles of } Zn \times \text{Molar mass} = 0.00625 \text{ mol} \times 65.38 \text{ g/mol} = 0.408625 \text{ g} \][/tex]
Step 5: Calculate the percentage purity of the zinc sample.
[tex]\[ \text{Percentage purity} = \left( \frac{\text{Mass of pure } Zn}{\text{Mass of impure sample}} \right) \times 100 \][/tex]
[tex]\[ \text{Percentage purity} = \left( \frac{0.408625 \text{ g}}{4.0 \text{ g}} \right) \times 100 = 10.215625 \% \][/tex]
So, the percentage purity of the zinc sample is approximately [tex]\( 10.22 \% \)[/tex].
### (i) Balancing the Redox Equation Using Ion-Electron Method
First, let’s balance the given reaction using the ion-electron method. The reaction in question is:
[tex]\[ Zn + NO_3^- \rightarrow Zn^{2+} + NH_4^+ \][/tex]
Step 1: Write the oxidation and reduction half-reactions.
Oxidation half-reaction:
[tex]\[ Zn \rightarrow Zn^{2+} + 2e^- \][/tex]
Reduction half-reaction:
[tex]\[ NO_3^- + 10H^+ + 8e^- \rightarrow NH_4^+ + 3H_2O \][/tex]
Step 2: Balance the atoms other than oxygen and hydrogen.
The zinc atoms in the oxidation half-reaction are already balanced.
Step 3: Balance oxygen atoms by adding [tex]\(H_2O\)[/tex] molecules.
In the reduction half-reaction:
There are no changes needed since it is already balanced for oxygen atoms.
Step 4: Balance hydrogen atoms by adding [tex]\(H^+\)[/tex] ions.
Again, the reduction half-reaction:
[tex]\[ NO_3^- + 10H^+ + 8e^- \rightarrow NH_4^+ + 3H_2O \][/tex]
The reduction half-reaction is balanced for hydrogen.
Step 5: Balance the charges by adding electrons.
The oxidation half-reaction:
[tex]\[ Zn \rightarrow Zn^{2+} + 2e^- \][/tex]
The reduction half-reaction:
[tex]\[ NO_3^- + 10H^+ + 8e^- \rightarrow NH_4^+ + 3H_2O \][/tex]
Step 6: Ensure the number of electrons lost in oxidation equals the number of electrons gained in reduction.
To balance the electrons, we need to multiply the oxidation half-reaction by 4 and the reduction half-reaction by 1:
[tex]\[ 4(Zn \rightarrow Zn^{2+} + 2e^-) \][/tex]
[tex]\[ NO_3^- + 10H^+ + 8e^- \rightarrow NH_4^+ + 3H_2O \][/tex]
Each side of the reaction should now have 8 electrons:
[tex]\[ 4Zn \rightarrow 4Zn^{2+} + 8e^- \][/tex]
[tex]\[ NO_3^- + 10H^+ + 8e^- \rightarrow NH_4^+ + 3H_2O \][/tex]
Step 7: Combine the half-reactions and simplify.
Combining these, we get:
[tex]\[ 4Zn + NO_3^- + 10H^+ \rightarrow 4Zn^{2+} + NH_4^+ + 3H_2O \][/tex]
This is the balanced redox equation.
### (ii) Calculate the Percentage Purity of Zinc Sample
Given:
- Mass of impure zinc sample: [tex]\(4.0 \text{ g}\)[/tex]
- Volume of [tex]\( HNO_3 \)[/tex]: [tex]\( 25.0 \text{ mL} \)[/tex]
- Molarity of [tex]\( HNO_3 \)[/tex]: [tex]\(0.5 \text{ M}\)[/tex]
Step 1: Convert the volume of [tex]\( HNO_3 \)[/tex] from milliliters to liters.
[tex]\[ \text{Volume of } HNO_3 \text{ in L} = \frac{25.0 \text{ mL}}{1000} = 0.025 \text{ L} \][/tex]
Step 2: Calculate the moles of [tex]\( HNO_3 \)[/tex].
[tex]\[ \text{Moles of } HNO_3 = \text{Volume in L} \times \text{Molarity} = 0.025 \text{ L} \times 0.5 \text{ M} = 0.0125 \text{ mol} \][/tex]
Step 3: Determine the moles of [tex]\( Zn \)[/tex] that reacts.
From the balanced redox reaction:
[tex]\[ Zn + 2NO_3^- + 4H^+ \rightarrow Zn^{2+} + 2NO_2 + 2H_2O \][/tex]
We see that 1 mole of [tex]\( Zn \)[/tex] reacts with 2 moles of [tex]\( HNO_3 \)[/tex].
[tex]\[ \text{Moles of } Zn = \frac{\text{Moles of } HNO_3}{2} = \frac{0.0125}{2} = 0.00625 \text{ mol} \][/tex]
Step 4: Calculate the mass of pure [tex]\( Zn \)[/tex] that reacted.
[tex]\[ \text{Molar mass of } Zn = 65.38 \text{ g/mol} \][/tex]
[tex]\[ \text{Mass of pure } Zn = \text{Moles of } Zn \times \text{Molar mass} = 0.00625 \text{ mol} \times 65.38 \text{ g/mol} = 0.408625 \text{ g} \][/tex]
Step 5: Calculate the percentage purity of the zinc sample.
[tex]\[ \text{Percentage purity} = \left( \frac{\text{Mass of pure } Zn}{\text{Mass of impure sample}} \right) \times 100 \][/tex]
[tex]\[ \text{Percentage purity} = \left( \frac{0.408625 \text{ g}}{4.0 \text{ g}} \right) \times 100 = 10.215625 \% \][/tex]
So, the percentage purity of the zinc sample is approximately [tex]\( 10.22 \% \)[/tex].
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.