IDNLearn.com is your reliable source for expert answers and community insights. Get accurate and timely answers to your queries from our extensive network of experienced professionals.

Find the solution of the differential equation

[tex]\[ r''(t) = \left\langle e^{6t-6}, t^2-1, 1 \right\rangle \][/tex]

with the initial conditions

[tex]\[ r(1) = \langle 0, 0, 11 \rangle, \quad r'(1) = \langle 7, 0, 0 \rangle. \][/tex]

(Use symbolic notation and fractions where needed. Give your answer in vector form.)


Sagot :

To solve the differential equation [tex]\( \mathbf{r}''(t) = \left\langle e^{6t-6}, t^2 - 1, 1 \right\rangle \)[/tex] with the given initial conditions [tex]\( \mathbf{r}(1) = \langle 0, 0, 11 \rangle \)[/tex] and [tex]\( \mathbf{r}'(1) = \langle 7, 0, 0 \rangle \)[/tex], follow these steps:

1. Integrate [tex]\( \mathbf{r}''(t) \)[/tex] with respect to [tex]\( t \)[/tex] to find [tex]\( \mathbf{r}'(t) \)[/tex]:

Given:
[tex]\[ \mathbf{r}''(t) = \left\langle e^{6t - 6}, t^2 - 1, 1 \right\rangle \][/tex]

Integrate each component with respect to [tex]\( t \)[/tex]:
[tex]\[ r''_1(t) = e^{6t - 6} \implies r'_1(t) = \int e^{6t - 6} \, dt = \frac{e^{6t - 6}}{6} + C_1 \][/tex]
[tex]\[ r''_2(t) = t^2 - 1 \implies r'_2(t) = \int (t^2 - 1) \, dt = \frac{t^3}{3} - t + C_2 \][/tex]
[tex]\[ r''_3(t) = 1 \implies r'_3(t) = \int 1 \, dt = t + C_3 \][/tex]

So,
[tex]\[ \mathbf{r}'(t) = \left\langle \frac{e^{6t - 6}}{6} + C_1, \frac{t^3}{3} - t + C_2, t + C_3 \right\rangle \][/tex]

2. Use the initial condition [tex]\( \mathbf{r}'(1) = \langle 7, 0, 0 \rangle \)[/tex] to solve for [tex]\( C_1, C_2, \)[/tex] and [tex]\( C_3 \)[/tex]:

Plug in [tex]\( t = 1 \)[/tex] into [tex]\( \mathbf{r}'(t) \)[/tex]:
[tex]\[ \mathbf{r}'(1) = \left\langle \frac{e^{6 \cdot 1 - 6}}{6} + C_1, \frac{1^3}{3} - 1 + C_2, 1 + C_3 \right\rangle = \langle 7, 0, 0 \rangle \][/tex]

Solving each component:
[tex]\[ \frac{e^0}{6} + C_1 = 7 \implies C_1 = 7 - \frac{1}{6} = \frac{42}{6} - \frac{1}{6} = \frac{41}{6} \][/tex]
[tex]\[ \frac{1}{3} - 1 + C_2 = 0 \implies C_2 = 1 - \frac{1}{3} = \frac{3}{3} - \frac{1}{3} = \frac{2}{3} \][/tex]
[tex]\[ 1 + C_3 = 0 \implies C_3 = -1 \][/tex]

Therefore:
[tex]\[ \mathbf{r}'(t) = \left\langle \frac{e^{6t - 6}}{6} + \frac{41}{6}, \frac{t^3}{3} - t + \frac{2}{3}, t - 1 \right\rangle \][/tex]

3. Integrate [tex]\( \mathbf{r}'(t) \)[/tex] with respect to [tex]\( t \)[/tex] to find [tex]\( \mathbf{r}(t) \)[/tex]:

Integrate each component of [tex]\( \mathbf{r}'(t) \)[/tex]:
[tex]\[ r'_1(t) = \frac{e^{6t - 6}}{6} + \frac{41}{6} \implies r_1(t) = \int \left( \frac{e^{6t - 6}}{6} + \frac{41}{6} \right) \, dt = \frac{e^{6t - 6}}{36} + \frac{41t}{6} + C_4 \][/tex]

[tex]\[ r'_2(t) = \frac{t^3}{3} - t + \frac{2}{3} \implies r_2(t) = \int \left( \frac{t^3}{3} - t + \frac{2}{3} \right) \, dt = \frac{t^4}{12} - \frac{t^2}{2} + \frac{2t}{3} + C_5 \][/tex]

[tex]\[ r'_3(t) = t - 1 \implies r_3(t) = \int (t - 1) \, dt = \frac{t^2}{2} - t + C_6 \][/tex]

Thus:
[tex]\[ \mathbf{r}(t) = \left\langle \frac{e^{6t - 6}}{36} + \frac{41t}{6} + C_4, \frac{t^4}{12} - \frac{t^2}{2} + \frac{2t}{3} + C_5, \frac{t^2}{2} - t + C_6 \right\rangle \][/tex]

4. Use the initial condition [tex]\( \mathbf{r}(1) = \langle 0, 0, 11 \rangle \)[/tex] to solve for [tex]\( C_4, C_5, \)[/tex] and [tex]\( C_6 \)[/tex]:

Plug in [tex]\( t = 1 \)[/tex] into [tex]\( \mathbf{r}(t) \)[/tex]:
[tex]\[ \mathbf{r}(1) = \left\langle \frac{e^0}{36} + \frac{41 \cdot 1}{6} + C_4, \frac{1^4}{12} - \frac{1^2}{2} + \frac{2 \cdot 1}{3} + C_5, \frac{1^2}{2} - 1 + C_6 \right\rangle = \langle 0, 0, 11 \rangle \][/tex]

Solving each component:
[tex]\[ \frac{1}{36} + \frac{41}{6} + C_4 = 0 \implies C_4 = -\frac{41}{6} - \frac{1}{36} = -\frac{246}{36} - \frac{1}{36} = -\frac{247}{36} \][/tex]
[tex]\[ \frac{1}{12} - \frac{1}{2} + \frac{2}{3} + C_5 = 0 \implies C_5 = -\frac{1}{12} + \frac{6}{12} - \frac{2}{12} = -\frac{5}{12} \][/tex]
[tex]\[ \frac{1}{2} - 1 + C_6 = 11 \implies C_6 = 11 - \frac{1}{2} + 1 = \frac{21}{2} \][/tex]

Therefore:
[tex]\[ \mathbf{r}(t) = \left\langle \frac{e^{6t - 6}}{36} + \frac{41t}{6} - \frac{247}{36}, \frac{t^4}{12} - \frac{t^2}{2} + \frac{2t}{3} - \frac{5}{12}, \frac{t^2}{2} - t + \frac{21}{2} \right\rangle \][/tex]

Putting everything together, the solution is:
[tex]\[ \mathbf{r}(t) = \left\langle 7t + \frac{e^{6t-6}}{36}, \frac{t^4}{12} - \frac{t^2}{2}, \frac{t^2}{2} + 11 \right\rangle \][/tex]
and the position vector at [tex]\( t = 1 \)[/tex] is:
[tex]\[ \mathbf{r}(1) = \left\langle \frac{253}{36}, -\frac{5}{12}, \frac{23}{2} \right\rangle \][/tex]