IDNLearn.com: Your one-stop destination for reliable answers to diverse questions. Join our interactive Q&A community and get reliable, detailed answers from experienced professionals across a variety of topics.
Sagot :
To solve this problem, we need to determine the distance of the object from a concave mirror given its radius of curvature and the magnification of the image.
1. Understand the given values:
- The radius of curvature [tex]\( R \)[/tex] of the concave mirror is 30.0 cm.
- The magnification [tex]\( m \)[/tex] of the image is 2.0 times the size of the object.
2. Determine the focal length [tex]\( f \)[/tex]:
- For a concave mirror, the focal length is half of the radius of curvature.
[tex]\[ f = \frac{R}{2} \][/tex]
Substituting the given radius of curvature:
[tex]\[ f = \frac{30.0 \, \text{cm}}{2} = 15.0 \, \text{cm} \][/tex]
3. Relate magnification to image distance [tex]\( d_i \)[/tex] and object distance [tex]\( d_o \)[/tex]:
- The magnification [tex]\( m \)[/tex] of a mirror is given by the ratio of the image distance to the object distance.
[tex]\[ m = \frac{d_i}{d_o} \][/tex]
Given that [tex]\( m = 2.0 \)[/tex]:
[tex]\[ \frac{d_i}{d_o} = 2.0 \implies d_i = 2 \cdot d_o \][/tex]
4. Use the mirror equation:
- The mirror equation relates the focal length to the object distance and the image distance.
[tex]\[ \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} \][/tex]
Substituting [tex]\( d_i = 2 \cdot d_o \)[/tex]:
[tex]\[ \frac{1}{f} = \frac{1}{d_o} + \frac{1}{2 \cdot d_o} \][/tex]
5. Solve for [tex]\( d_o \)[/tex]:
- Combine the terms on the right side of the mirror equation:
[tex]\[ \frac{1}{f} = \frac{1}{d_o} + \frac{1}{2 \cdot d_o} = \frac{2}{2 \cdot d_o} + \frac{1}{2 \cdot d_o} = \frac{3}{2 \cdot d_o} \][/tex]
- Invert both sides to solve for [tex]\( d_o \)[/tex]:
[tex]\[ \frac{2 \cdot d_o}{3} = f \][/tex]
- Substituting the given focal length [tex]\( f = 15.0 \, \text{cm} \)[/tex]:
[tex]\[ \frac{2 \cdot d_o}{3} = 15.0 \, \text{cm} \][/tex]
- Solve for [tex]\( d_o \)[/tex]:
[tex]\[ 2 \cdot d_o = 3 \cdot 15.0 \, \text{cm} = 45.0 \, \text{cm} \][/tex]
[tex]\[ d_o = \frac{45.0 \, \text{cm}}{2} = 22.5 \, \text{cm} \][/tex]
Therefore, the distance of the object from the mirror is:
[tex]\[ \boxed{22.5 \, \text{cm}} \][/tex]
The correct answer is C.
1. Understand the given values:
- The radius of curvature [tex]\( R \)[/tex] of the concave mirror is 30.0 cm.
- The magnification [tex]\( m \)[/tex] of the image is 2.0 times the size of the object.
2. Determine the focal length [tex]\( f \)[/tex]:
- For a concave mirror, the focal length is half of the radius of curvature.
[tex]\[ f = \frac{R}{2} \][/tex]
Substituting the given radius of curvature:
[tex]\[ f = \frac{30.0 \, \text{cm}}{2} = 15.0 \, \text{cm} \][/tex]
3. Relate magnification to image distance [tex]\( d_i \)[/tex] and object distance [tex]\( d_o \)[/tex]:
- The magnification [tex]\( m \)[/tex] of a mirror is given by the ratio of the image distance to the object distance.
[tex]\[ m = \frac{d_i}{d_o} \][/tex]
Given that [tex]\( m = 2.0 \)[/tex]:
[tex]\[ \frac{d_i}{d_o} = 2.0 \implies d_i = 2 \cdot d_o \][/tex]
4. Use the mirror equation:
- The mirror equation relates the focal length to the object distance and the image distance.
[tex]\[ \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} \][/tex]
Substituting [tex]\( d_i = 2 \cdot d_o \)[/tex]:
[tex]\[ \frac{1}{f} = \frac{1}{d_o} + \frac{1}{2 \cdot d_o} \][/tex]
5. Solve for [tex]\( d_o \)[/tex]:
- Combine the terms on the right side of the mirror equation:
[tex]\[ \frac{1}{f} = \frac{1}{d_o} + \frac{1}{2 \cdot d_o} = \frac{2}{2 \cdot d_o} + \frac{1}{2 \cdot d_o} = \frac{3}{2 \cdot d_o} \][/tex]
- Invert both sides to solve for [tex]\( d_o \)[/tex]:
[tex]\[ \frac{2 \cdot d_o}{3} = f \][/tex]
- Substituting the given focal length [tex]\( f = 15.0 \, \text{cm} \)[/tex]:
[tex]\[ \frac{2 \cdot d_o}{3} = 15.0 \, \text{cm} \][/tex]
- Solve for [tex]\( d_o \)[/tex]:
[tex]\[ 2 \cdot d_o = 3 \cdot 15.0 \, \text{cm} = 45.0 \, \text{cm} \][/tex]
[tex]\[ d_o = \frac{45.0 \, \text{cm}}{2} = 22.5 \, \text{cm} \][/tex]
Therefore, the distance of the object from the mirror is:
[tex]\[ \boxed{22.5 \, \text{cm}} \][/tex]
The correct answer is C.
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Trust IDNLearn.com for all your queries. We appreciate your visit and hope to assist you again soon.