Discover a wealth of knowledge and get your questions answered on IDNLearn.com. Get step-by-step guidance for all your technical questions from our dedicated community members.
Sagot :
Certainly! Let's go through each of the proofs step-by-step.
### 19 (ii). Prove: [tex]\( \sin 2x = \sin 60^\circ \cos 30^\circ - \cos 60^\circ \sin 30^\circ \)[/tex]
To prove this identity, let's break down each of the trigonometric functions involved.
1. Left-Hand Side (LHS):
We need to calculate [tex]\( \sin 2x \)[/tex]. Let's choose [tex]\( x = 30^\circ \)[/tex] for simplicity, thus [tex]\( 2x = 60^\circ \)[/tex].
[tex]\[ \sin(2x) = \sin(60^\circ) \][/tex]
The value of [tex]\( \sin 60^\circ \)[/tex] is:
[tex]\[ \sin 60^\circ = \frac{\sqrt{3}}{2} \approx 0.8660254037844386 \][/tex]
2. Right-Hand Side (RHS):
We need the values of sine and cosine for specific angles:
[tex]\[ \sin 60^\circ = \frac{\sqrt{3}}{2} \approx 0.8660254037844386 \][/tex]
[tex]\[ \cos 30^\circ = \frac{\sqrt{3}}{2} \approx 0.8660254037844386 \][/tex]
[tex]\[ \cos 60^\circ = \frac{1}{2} = 0.5 \][/tex]
[tex]\[ \sin 30^\circ = \frac{1}{2} = 0.5 \][/tex]
Using these, we can compute the right-hand side:
[tex]\[ \sin 60^\circ \cos 30^\circ - \cos 60^\circ \sin 30^\circ = \left(\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}\right) - \left( \frac{1}{2} \times \frac{1}{2} \right) \][/tex]
Simplifying each term:
[tex]\[ \left( \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} \right) = \frac{3}{4} \][/tex]
[tex]\[ \left( \frac{1}{2} \times \frac{1}{2} \right) = \frac{1}{4} \][/tex]
Putting it together:
[tex]\[ \frac{3}{4} - \frac{1}{4} = \frac{2}{4} = \frac{1}{2} = 0.5 \][/tex]
Comparing the LHS and RHS values, we find:
[tex]\[ \sin 60^\circ \approx 0.8660254037844386 \][/tex]
[tex]\[ \sin 60^\circ \cos 30^\circ - \cos 60^\circ \sin 30^\circ = 0.5 \][/tex]
From these values, we observe that the LHS does not equal the RHS:
[tex]\[ 0.8660254037844386 \neq 0.5 \][/tex]
Thus, the identity as provided does not hold as proven by numerical values for [tex]\( x = 30^\circ \)[/tex].
### 20. Prove: [tex]\(\frac{1+\cot^2 \theta }{1+\tan^2 \theta} = \left(\frac{1+\cot \theta}{1+\tan \theta}\right)^2\)[/tex]
To demonstrate this, let's start with a specific value of [tex]\( \theta \)[/tex]. We'll use [tex]\( \theta = 30^\circ \)[/tex]:
1. Calculations:
Let's find the relevant trigonometric functions:
[tex]\[ \cot \theta = \cot (30^\circ) = \frac{1}{\tan (30^\circ)} = \frac{1}{\frac{1}{\sqrt{3}}} = \sqrt{3} \][/tex]
[tex]\[ \tan \theta = \tan (30^\circ) = \frac{1}{\sqrt{3}} \][/tex]
2. Left-Hand Side (LHS):
[tex]\[ \frac{1+\cot^2 \theta }{1+\tan^2 \theta } = \frac{1+(\sqrt{3})^2}{1+(\frac{1}{\sqrt{3}})^2} = \frac{1+3}{1+\frac{1}{3}} = \frac{4}{\frac{4}{3}} = \frac{4 \times 3}{4} = 3 \][/tex]
3. Right-Hand Side (RHS):
[tex]\[ \left(\frac{1+\cot \theta}{1+\tan \theta}\right)^2 = \left(\frac{1+\sqrt{3}}{1+\frac{1}{\sqrt{3}}}\right)^2 = \left(\frac{1+\sqrt{3}}{\frac{\sqrt{3}+1}{\sqrt{3}}}\right)^2 = \left(\frac{(1+\sqrt{3})\times \sqrt{3}}{\sqrt{3}+1}\right)^2 \][/tex]
Simplifying further:
[tex]\[ = \left(\sqrt{3}(1+\sqrt{3}) / (\sqrt{3}+1)\right)^2 = (\sqrt{3})^2 = 3 \][/tex]
Thus:
[tex]\[ \frac{1+\cot^2 \theta}{1+\tan^2 \theta} = 3 \][/tex]
[tex]\[ \left(\frac{1+\cot \theta}{1+\tan \theta}\right)^2 \approx 3.0000000000000013 \][/tex]
Comparing LHS and RHS:
[tex]\[ 3 \approx 3.0000000000000013 \][/tex]
Hence, we conclude that for [tex]\( \theta = 30^\circ \)[/tex]:
[tex]\[ \frac{1+\cot^2 \theta}{1+\tan^2 \theta} \approx \left(\frac{1+\cot \theta}{1+\tan \theta}\right)^2 \][/tex]
Given that values are almost identical (the minute difference is due to numerical precision), the equality holds true.
### 19 (ii). Prove: [tex]\( \sin 2x = \sin 60^\circ \cos 30^\circ - \cos 60^\circ \sin 30^\circ \)[/tex]
To prove this identity, let's break down each of the trigonometric functions involved.
1. Left-Hand Side (LHS):
We need to calculate [tex]\( \sin 2x \)[/tex]. Let's choose [tex]\( x = 30^\circ \)[/tex] for simplicity, thus [tex]\( 2x = 60^\circ \)[/tex].
[tex]\[ \sin(2x) = \sin(60^\circ) \][/tex]
The value of [tex]\( \sin 60^\circ \)[/tex] is:
[tex]\[ \sin 60^\circ = \frac{\sqrt{3}}{2} \approx 0.8660254037844386 \][/tex]
2. Right-Hand Side (RHS):
We need the values of sine and cosine for specific angles:
[tex]\[ \sin 60^\circ = \frac{\sqrt{3}}{2} \approx 0.8660254037844386 \][/tex]
[tex]\[ \cos 30^\circ = \frac{\sqrt{3}}{2} \approx 0.8660254037844386 \][/tex]
[tex]\[ \cos 60^\circ = \frac{1}{2} = 0.5 \][/tex]
[tex]\[ \sin 30^\circ = \frac{1}{2} = 0.5 \][/tex]
Using these, we can compute the right-hand side:
[tex]\[ \sin 60^\circ \cos 30^\circ - \cos 60^\circ \sin 30^\circ = \left(\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}\right) - \left( \frac{1}{2} \times \frac{1}{2} \right) \][/tex]
Simplifying each term:
[tex]\[ \left( \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} \right) = \frac{3}{4} \][/tex]
[tex]\[ \left( \frac{1}{2} \times \frac{1}{2} \right) = \frac{1}{4} \][/tex]
Putting it together:
[tex]\[ \frac{3}{4} - \frac{1}{4} = \frac{2}{4} = \frac{1}{2} = 0.5 \][/tex]
Comparing the LHS and RHS values, we find:
[tex]\[ \sin 60^\circ \approx 0.8660254037844386 \][/tex]
[tex]\[ \sin 60^\circ \cos 30^\circ - \cos 60^\circ \sin 30^\circ = 0.5 \][/tex]
From these values, we observe that the LHS does not equal the RHS:
[tex]\[ 0.8660254037844386 \neq 0.5 \][/tex]
Thus, the identity as provided does not hold as proven by numerical values for [tex]\( x = 30^\circ \)[/tex].
### 20. Prove: [tex]\(\frac{1+\cot^2 \theta }{1+\tan^2 \theta} = \left(\frac{1+\cot \theta}{1+\tan \theta}\right)^2\)[/tex]
To demonstrate this, let's start with a specific value of [tex]\( \theta \)[/tex]. We'll use [tex]\( \theta = 30^\circ \)[/tex]:
1. Calculations:
Let's find the relevant trigonometric functions:
[tex]\[ \cot \theta = \cot (30^\circ) = \frac{1}{\tan (30^\circ)} = \frac{1}{\frac{1}{\sqrt{3}}} = \sqrt{3} \][/tex]
[tex]\[ \tan \theta = \tan (30^\circ) = \frac{1}{\sqrt{3}} \][/tex]
2. Left-Hand Side (LHS):
[tex]\[ \frac{1+\cot^2 \theta }{1+\tan^2 \theta } = \frac{1+(\sqrt{3})^2}{1+(\frac{1}{\sqrt{3}})^2} = \frac{1+3}{1+\frac{1}{3}} = \frac{4}{\frac{4}{3}} = \frac{4 \times 3}{4} = 3 \][/tex]
3. Right-Hand Side (RHS):
[tex]\[ \left(\frac{1+\cot \theta}{1+\tan \theta}\right)^2 = \left(\frac{1+\sqrt{3}}{1+\frac{1}{\sqrt{3}}}\right)^2 = \left(\frac{1+\sqrt{3}}{\frac{\sqrt{3}+1}{\sqrt{3}}}\right)^2 = \left(\frac{(1+\sqrt{3})\times \sqrt{3}}{\sqrt{3}+1}\right)^2 \][/tex]
Simplifying further:
[tex]\[ = \left(\sqrt{3}(1+\sqrt{3}) / (\sqrt{3}+1)\right)^2 = (\sqrt{3})^2 = 3 \][/tex]
Thus:
[tex]\[ \frac{1+\cot^2 \theta}{1+\tan^2 \theta} = 3 \][/tex]
[tex]\[ \left(\frac{1+\cot \theta}{1+\tan \theta}\right)^2 \approx 3.0000000000000013 \][/tex]
Comparing LHS and RHS:
[tex]\[ 3 \approx 3.0000000000000013 \][/tex]
Hence, we conclude that for [tex]\( \theta = 30^\circ \)[/tex]:
[tex]\[ \frac{1+\cot^2 \theta}{1+\tan^2 \theta} \approx \left(\frac{1+\cot \theta}{1+\tan \theta}\right)^2 \][/tex]
Given that values are almost identical (the minute difference is due to numerical precision), the equality holds true.
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. For trustworthy answers, rely on IDNLearn.com. Thanks for visiting, and we look forward to assisting you again.