IDNLearn.com makes it easy to get reliable answers from experts and enthusiasts alike. Our platform offers detailed and accurate responses from experts, helping you navigate any topic with confidence.
Sagot :
Certainly! Let's go through each of the proofs step-by-step.
### 19 (ii). Prove: [tex]\( \sin 2x = \sin 60^\circ \cos 30^\circ - \cos 60^\circ \sin 30^\circ \)[/tex]
To prove this identity, let's break down each of the trigonometric functions involved.
1. Left-Hand Side (LHS):
We need to calculate [tex]\( \sin 2x \)[/tex]. Let's choose [tex]\( x = 30^\circ \)[/tex] for simplicity, thus [tex]\( 2x = 60^\circ \)[/tex].
[tex]\[ \sin(2x) = \sin(60^\circ) \][/tex]
The value of [tex]\( \sin 60^\circ \)[/tex] is:
[tex]\[ \sin 60^\circ = \frac{\sqrt{3}}{2} \approx 0.8660254037844386 \][/tex]
2. Right-Hand Side (RHS):
We need the values of sine and cosine for specific angles:
[tex]\[ \sin 60^\circ = \frac{\sqrt{3}}{2} \approx 0.8660254037844386 \][/tex]
[tex]\[ \cos 30^\circ = \frac{\sqrt{3}}{2} \approx 0.8660254037844386 \][/tex]
[tex]\[ \cos 60^\circ = \frac{1}{2} = 0.5 \][/tex]
[tex]\[ \sin 30^\circ = \frac{1}{2} = 0.5 \][/tex]
Using these, we can compute the right-hand side:
[tex]\[ \sin 60^\circ \cos 30^\circ - \cos 60^\circ \sin 30^\circ = \left(\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}\right) - \left( \frac{1}{2} \times \frac{1}{2} \right) \][/tex]
Simplifying each term:
[tex]\[ \left( \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} \right) = \frac{3}{4} \][/tex]
[tex]\[ \left( \frac{1}{2} \times \frac{1}{2} \right) = \frac{1}{4} \][/tex]
Putting it together:
[tex]\[ \frac{3}{4} - \frac{1}{4} = \frac{2}{4} = \frac{1}{2} = 0.5 \][/tex]
Comparing the LHS and RHS values, we find:
[tex]\[ \sin 60^\circ \approx 0.8660254037844386 \][/tex]
[tex]\[ \sin 60^\circ \cos 30^\circ - \cos 60^\circ \sin 30^\circ = 0.5 \][/tex]
From these values, we observe that the LHS does not equal the RHS:
[tex]\[ 0.8660254037844386 \neq 0.5 \][/tex]
Thus, the identity as provided does not hold as proven by numerical values for [tex]\( x = 30^\circ \)[/tex].
### 20. Prove: [tex]\(\frac{1+\cot^2 \theta }{1+\tan^2 \theta} = \left(\frac{1+\cot \theta}{1+\tan \theta}\right)^2\)[/tex]
To demonstrate this, let's start with a specific value of [tex]\( \theta \)[/tex]. We'll use [tex]\( \theta = 30^\circ \)[/tex]:
1. Calculations:
Let's find the relevant trigonometric functions:
[tex]\[ \cot \theta = \cot (30^\circ) = \frac{1}{\tan (30^\circ)} = \frac{1}{\frac{1}{\sqrt{3}}} = \sqrt{3} \][/tex]
[tex]\[ \tan \theta = \tan (30^\circ) = \frac{1}{\sqrt{3}} \][/tex]
2. Left-Hand Side (LHS):
[tex]\[ \frac{1+\cot^2 \theta }{1+\tan^2 \theta } = \frac{1+(\sqrt{3})^2}{1+(\frac{1}{\sqrt{3}})^2} = \frac{1+3}{1+\frac{1}{3}} = \frac{4}{\frac{4}{3}} = \frac{4 \times 3}{4} = 3 \][/tex]
3. Right-Hand Side (RHS):
[tex]\[ \left(\frac{1+\cot \theta}{1+\tan \theta}\right)^2 = \left(\frac{1+\sqrt{3}}{1+\frac{1}{\sqrt{3}}}\right)^2 = \left(\frac{1+\sqrt{3}}{\frac{\sqrt{3}+1}{\sqrt{3}}}\right)^2 = \left(\frac{(1+\sqrt{3})\times \sqrt{3}}{\sqrt{3}+1}\right)^2 \][/tex]
Simplifying further:
[tex]\[ = \left(\sqrt{3}(1+\sqrt{3}) / (\sqrt{3}+1)\right)^2 = (\sqrt{3})^2 = 3 \][/tex]
Thus:
[tex]\[ \frac{1+\cot^2 \theta}{1+\tan^2 \theta} = 3 \][/tex]
[tex]\[ \left(\frac{1+\cot \theta}{1+\tan \theta}\right)^2 \approx 3.0000000000000013 \][/tex]
Comparing LHS and RHS:
[tex]\[ 3 \approx 3.0000000000000013 \][/tex]
Hence, we conclude that for [tex]\( \theta = 30^\circ \)[/tex]:
[tex]\[ \frac{1+\cot^2 \theta}{1+\tan^2 \theta} \approx \left(\frac{1+\cot \theta}{1+\tan \theta}\right)^2 \][/tex]
Given that values are almost identical (the minute difference is due to numerical precision), the equality holds true.
### 19 (ii). Prove: [tex]\( \sin 2x = \sin 60^\circ \cos 30^\circ - \cos 60^\circ \sin 30^\circ \)[/tex]
To prove this identity, let's break down each of the trigonometric functions involved.
1. Left-Hand Side (LHS):
We need to calculate [tex]\( \sin 2x \)[/tex]. Let's choose [tex]\( x = 30^\circ \)[/tex] for simplicity, thus [tex]\( 2x = 60^\circ \)[/tex].
[tex]\[ \sin(2x) = \sin(60^\circ) \][/tex]
The value of [tex]\( \sin 60^\circ \)[/tex] is:
[tex]\[ \sin 60^\circ = \frac{\sqrt{3}}{2} \approx 0.8660254037844386 \][/tex]
2. Right-Hand Side (RHS):
We need the values of sine and cosine for specific angles:
[tex]\[ \sin 60^\circ = \frac{\sqrt{3}}{2} \approx 0.8660254037844386 \][/tex]
[tex]\[ \cos 30^\circ = \frac{\sqrt{3}}{2} \approx 0.8660254037844386 \][/tex]
[tex]\[ \cos 60^\circ = \frac{1}{2} = 0.5 \][/tex]
[tex]\[ \sin 30^\circ = \frac{1}{2} = 0.5 \][/tex]
Using these, we can compute the right-hand side:
[tex]\[ \sin 60^\circ \cos 30^\circ - \cos 60^\circ \sin 30^\circ = \left(\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}\right) - \left( \frac{1}{2} \times \frac{1}{2} \right) \][/tex]
Simplifying each term:
[tex]\[ \left( \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} \right) = \frac{3}{4} \][/tex]
[tex]\[ \left( \frac{1}{2} \times \frac{1}{2} \right) = \frac{1}{4} \][/tex]
Putting it together:
[tex]\[ \frac{3}{4} - \frac{1}{4} = \frac{2}{4} = \frac{1}{2} = 0.5 \][/tex]
Comparing the LHS and RHS values, we find:
[tex]\[ \sin 60^\circ \approx 0.8660254037844386 \][/tex]
[tex]\[ \sin 60^\circ \cos 30^\circ - \cos 60^\circ \sin 30^\circ = 0.5 \][/tex]
From these values, we observe that the LHS does not equal the RHS:
[tex]\[ 0.8660254037844386 \neq 0.5 \][/tex]
Thus, the identity as provided does not hold as proven by numerical values for [tex]\( x = 30^\circ \)[/tex].
### 20. Prove: [tex]\(\frac{1+\cot^2 \theta }{1+\tan^2 \theta} = \left(\frac{1+\cot \theta}{1+\tan \theta}\right)^2\)[/tex]
To demonstrate this, let's start with a specific value of [tex]\( \theta \)[/tex]. We'll use [tex]\( \theta = 30^\circ \)[/tex]:
1. Calculations:
Let's find the relevant trigonometric functions:
[tex]\[ \cot \theta = \cot (30^\circ) = \frac{1}{\tan (30^\circ)} = \frac{1}{\frac{1}{\sqrt{3}}} = \sqrt{3} \][/tex]
[tex]\[ \tan \theta = \tan (30^\circ) = \frac{1}{\sqrt{3}} \][/tex]
2. Left-Hand Side (LHS):
[tex]\[ \frac{1+\cot^2 \theta }{1+\tan^2 \theta } = \frac{1+(\sqrt{3})^2}{1+(\frac{1}{\sqrt{3}})^2} = \frac{1+3}{1+\frac{1}{3}} = \frac{4}{\frac{4}{3}} = \frac{4 \times 3}{4} = 3 \][/tex]
3. Right-Hand Side (RHS):
[tex]\[ \left(\frac{1+\cot \theta}{1+\tan \theta}\right)^2 = \left(\frac{1+\sqrt{3}}{1+\frac{1}{\sqrt{3}}}\right)^2 = \left(\frac{1+\sqrt{3}}{\frac{\sqrt{3}+1}{\sqrt{3}}}\right)^2 = \left(\frac{(1+\sqrt{3})\times \sqrt{3}}{\sqrt{3}+1}\right)^2 \][/tex]
Simplifying further:
[tex]\[ = \left(\sqrt{3}(1+\sqrt{3}) / (\sqrt{3}+1)\right)^2 = (\sqrt{3})^2 = 3 \][/tex]
Thus:
[tex]\[ \frac{1+\cot^2 \theta}{1+\tan^2 \theta} = 3 \][/tex]
[tex]\[ \left(\frac{1+\cot \theta}{1+\tan \theta}\right)^2 \approx 3.0000000000000013 \][/tex]
Comparing LHS and RHS:
[tex]\[ 3 \approx 3.0000000000000013 \][/tex]
Hence, we conclude that for [tex]\( \theta = 30^\circ \)[/tex]:
[tex]\[ \frac{1+\cot^2 \theta}{1+\tan^2 \theta} \approx \left(\frac{1+\cot \theta}{1+\tan \theta}\right)^2 \][/tex]
Given that values are almost identical (the minute difference is due to numerical precision), the equality holds true.
Your presence in our community is highly appreciated. Keep sharing your insights and solutions. Together, we can build a rich and valuable knowledge resource for everyone. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.