IDNLearn.com: Your trusted source for finding accurate answers. Ask anything and receive thorough, reliable answers from our community of experienced professionals.
Sagot :
Sure, let's solve each of the questions step-by-step.
### 21. Solve the system of linear equations using Cramer's rule
Given system of equations:
1. [tex]\(-x + 4y - z = 1\)[/tex]
2. [tex]\(2x - y + z = 0\)[/tex]
3. [tex]\(x + y + z = 1\)[/tex]
Step 1: Form the coefficient and constant matrices
The coefficient matrix [tex]\(A\)[/tex] and constant vector [tex]\(\mathbf{B}\)[/tex] are:
[tex]\[ A = \begin{pmatrix} -1 & 4 & -1 \\ 2 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]
[tex]\[ \mathbf{B} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \][/tex]
Step 2: Calculate the determinant of the coefficient matrix [tex]\( \det(A) \)[/tex]
The determinant of [tex]\(A\)[/tex]:
[tex]\[ \det(A) = -5 \][/tex]
Step 3: Construct matrices for each variable and calculate their determinants
To find the determinant for each variable, modify the coefficient matrix by replacing the corresponding column with the constant vector [tex]\(\mathbf{B}\)[/tex].
- For [tex]\(x\)[/tex], replace the 1st column with [tex]\(\mathbf{B}\)[/tex]:
[tex]\[ A_x = \begin{pmatrix} 1 & 4 & -1 \\ 0 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]
[tex]\[ \det(A_x) = 1 \][/tex]
- For [tex]\(y\)[/tex], replace the 2nd column with [tex]\(\mathbf{B}\)[/tex]:
[tex]\[ A_y = \begin{pmatrix} -1 & 1 & -1 \\ 2 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]
[tex]\[ \det(A_y) = -2 \][/tex]
- For [tex]\(z\)[/tex], replace the 3rd column with [tex]\(\mathbf{B}\)[/tex]:
[tex]\[ A_z = \begin{pmatrix} -1 & 4 & 1 \\ 2 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]
[tex]\[ \det(A_z) = -4 \][/tex]
Step 4: Solve for variables [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex]
Using Cramer's rule:
[tex]\[ x = \frac{\det(A_x)}{\det(A)} = \frac{1}{-5} = -0.2 \][/tex]
[tex]\[ y = \frac{\det(A_y)}{\det(A)} = \frac{-2}{-5} = 0.4 \][/tex]
[tex]\[ z = \frac{\det(A_z)}{\det(A)} = \frac{-4}{-5} = 0.8 \][/tex]
So, the solutions are:
[tex]\[ x = -0.2, \quad y = 0.4, \quad z = 0.8 \][/tex]
### 22. Find [tex]\(\cos \theta\)[/tex]
Given vectors:
[tex]\(\vec{A} = \mathbf{i} + \mathbf{j}\)[/tex] and [tex]\(\vec{B} = -2\mathbf{i} + 3\mathbf{j}\)[/tex].
Step 1: Dot product of [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex]
[tex]\[ \vec{A} \cdot \vec{B} = (1)(-2) + (1)(3) = -2 + 3 = 1 \][/tex]
Step 2: Magnitudes of [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex]
[tex]\[ |\vec{A}| = \sqrt{1^2 + 1^2} = \sqrt{2} \][/tex]
[tex]\[ |\vec{B}| = \sqrt{(-2)^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \][/tex]
Step 3: Calculate [tex]\(\cos \theta\)[/tex]
[tex]\[ \cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|} = \frac{1}{\sqrt{2} \cdot \sqrt{13}} = \frac{1}{\sqrt{26}} \][/tex]
### 23. Find the area of the parallelogram
Given vectors:
[tex]\(\vec{U} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}\)[/tex] and [tex]\(\vec{V} = 4\mathbf{i} + \mathbf{j} + 2\mathbf{k}\)[/tex].
Step 1: Compute the cross-product [tex]\(\vec{U} \times \vec{V}\)[/tex]
[tex]\[ \vec{U} \times \vec{V} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & 1 \\ 4 & 1 & 2 \end{vmatrix} \][/tex]
[tex]\[ = \mathbf{i}(3\cdot 2 - 1\cdot 1) - \mathbf{j}(2\cdot 2 - 1\cdot 4) + \mathbf{k}(2\cdot 1 - 3\cdot 4) \][/tex]
[tex]\[ = \mathbf{i}(6 - 1) - \mathbf{j}(4 - 4) + \mathbf{k}(2 - 12) \][/tex]
[tex]\[ = 5\mathbf{i} - 0\mathbf{j} - 10\mathbf{k} \][/tex]
[tex]\[ = 5\mathbf{i} - 10\mathbf{k} \][/tex]
Step 2: Magnitude of the cross product
[tex]\[ |\vec{U} \times \vec{V}| = \sqrt{5^2 + (-10)^2} = \sqrt{25 + 100} = \sqrt{125} = 5\sqrt{5} \][/tex]
So, the area of the parallelogram is:
[tex]\[ 5\sqrt{5} \][/tex]
### 24. Find the value of [tex]\(x\)[/tex]
Given the determinant equation:
[tex]\[ \left|\begin{array}{cc} x & x+4 \\ x+2 & 6 \end{array}\right| = 6x + 1 \][/tex]
Step 1: Calculate the determinant
[tex]\[ |A| = x \cdot 6 - (x+4)(x+2) = 6x - (x^2 + 2x + 4x + 8) = 6x - (x^2 + 6x + 8) \][/tex]
[tex]\[ = 6x - x^2 - 6x - 8 = -x^2 - 8 \][/tex]
So,
[tex]\[ -x^2 - 8 = 6x + 1 \][/tex]
Step 2: Solve for [tex]\(x\)[/tex]
[tex]\[ -x^2 - 8 = 6x + 1 \][/tex]
[tex]\[ -x^2 - 6x - 8 = 1 \][/tex]
[tex]\[ -x^2 - 6x - 9 = 0 \][/tex]
[tex]\[ x^2 + 6x + 9 = 0 \][/tex]
[tex]\((x + 3)^2 = 0\)[/tex]
[tex]\[ x + 3 = 0 \implies x = -3 \][/tex]
So, the value of [tex]\(x\)[/tex] is:
[tex]\[ x = -3 \][/tex]
Here you go, I have solved each part of the question systematically.
### 21. Solve the system of linear equations using Cramer's rule
Given system of equations:
1. [tex]\(-x + 4y - z = 1\)[/tex]
2. [tex]\(2x - y + z = 0\)[/tex]
3. [tex]\(x + y + z = 1\)[/tex]
Step 1: Form the coefficient and constant matrices
The coefficient matrix [tex]\(A\)[/tex] and constant vector [tex]\(\mathbf{B}\)[/tex] are:
[tex]\[ A = \begin{pmatrix} -1 & 4 & -1 \\ 2 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]
[tex]\[ \mathbf{B} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \][/tex]
Step 2: Calculate the determinant of the coefficient matrix [tex]\( \det(A) \)[/tex]
The determinant of [tex]\(A\)[/tex]:
[tex]\[ \det(A) = -5 \][/tex]
Step 3: Construct matrices for each variable and calculate their determinants
To find the determinant for each variable, modify the coefficient matrix by replacing the corresponding column with the constant vector [tex]\(\mathbf{B}\)[/tex].
- For [tex]\(x\)[/tex], replace the 1st column with [tex]\(\mathbf{B}\)[/tex]:
[tex]\[ A_x = \begin{pmatrix} 1 & 4 & -1 \\ 0 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]
[tex]\[ \det(A_x) = 1 \][/tex]
- For [tex]\(y\)[/tex], replace the 2nd column with [tex]\(\mathbf{B}\)[/tex]:
[tex]\[ A_y = \begin{pmatrix} -1 & 1 & -1 \\ 2 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]
[tex]\[ \det(A_y) = -2 \][/tex]
- For [tex]\(z\)[/tex], replace the 3rd column with [tex]\(\mathbf{B}\)[/tex]:
[tex]\[ A_z = \begin{pmatrix} -1 & 4 & 1 \\ 2 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]
[tex]\[ \det(A_z) = -4 \][/tex]
Step 4: Solve for variables [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex]
Using Cramer's rule:
[tex]\[ x = \frac{\det(A_x)}{\det(A)} = \frac{1}{-5} = -0.2 \][/tex]
[tex]\[ y = \frac{\det(A_y)}{\det(A)} = \frac{-2}{-5} = 0.4 \][/tex]
[tex]\[ z = \frac{\det(A_z)}{\det(A)} = \frac{-4}{-5} = 0.8 \][/tex]
So, the solutions are:
[tex]\[ x = -0.2, \quad y = 0.4, \quad z = 0.8 \][/tex]
### 22. Find [tex]\(\cos \theta\)[/tex]
Given vectors:
[tex]\(\vec{A} = \mathbf{i} + \mathbf{j}\)[/tex] and [tex]\(\vec{B} = -2\mathbf{i} + 3\mathbf{j}\)[/tex].
Step 1: Dot product of [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex]
[tex]\[ \vec{A} \cdot \vec{B} = (1)(-2) + (1)(3) = -2 + 3 = 1 \][/tex]
Step 2: Magnitudes of [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex]
[tex]\[ |\vec{A}| = \sqrt{1^2 + 1^2} = \sqrt{2} \][/tex]
[tex]\[ |\vec{B}| = \sqrt{(-2)^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \][/tex]
Step 3: Calculate [tex]\(\cos \theta\)[/tex]
[tex]\[ \cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|} = \frac{1}{\sqrt{2} \cdot \sqrt{13}} = \frac{1}{\sqrt{26}} \][/tex]
### 23. Find the area of the parallelogram
Given vectors:
[tex]\(\vec{U} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}\)[/tex] and [tex]\(\vec{V} = 4\mathbf{i} + \mathbf{j} + 2\mathbf{k}\)[/tex].
Step 1: Compute the cross-product [tex]\(\vec{U} \times \vec{V}\)[/tex]
[tex]\[ \vec{U} \times \vec{V} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & 1 \\ 4 & 1 & 2 \end{vmatrix} \][/tex]
[tex]\[ = \mathbf{i}(3\cdot 2 - 1\cdot 1) - \mathbf{j}(2\cdot 2 - 1\cdot 4) + \mathbf{k}(2\cdot 1 - 3\cdot 4) \][/tex]
[tex]\[ = \mathbf{i}(6 - 1) - \mathbf{j}(4 - 4) + \mathbf{k}(2 - 12) \][/tex]
[tex]\[ = 5\mathbf{i} - 0\mathbf{j} - 10\mathbf{k} \][/tex]
[tex]\[ = 5\mathbf{i} - 10\mathbf{k} \][/tex]
Step 2: Magnitude of the cross product
[tex]\[ |\vec{U} \times \vec{V}| = \sqrt{5^2 + (-10)^2} = \sqrt{25 + 100} = \sqrt{125} = 5\sqrt{5} \][/tex]
So, the area of the parallelogram is:
[tex]\[ 5\sqrt{5} \][/tex]
### 24. Find the value of [tex]\(x\)[/tex]
Given the determinant equation:
[tex]\[ \left|\begin{array}{cc} x & x+4 \\ x+2 & 6 \end{array}\right| = 6x + 1 \][/tex]
Step 1: Calculate the determinant
[tex]\[ |A| = x \cdot 6 - (x+4)(x+2) = 6x - (x^2 + 2x + 4x + 8) = 6x - (x^2 + 6x + 8) \][/tex]
[tex]\[ = 6x - x^2 - 6x - 8 = -x^2 - 8 \][/tex]
So,
[tex]\[ -x^2 - 8 = 6x + 1 \][/tex]
Step 2: Solve for [tex]\(x\)[/tex]
[tex]\[ -x^2 - 8 = 6x + 1 \][/tex]
[tex]\[ -x^2 - 6x - 8 = 1 \][/tex]
[tex]\[ -x^2 - 6x - 9 = 0 \][/tex]
[tex]\[ x^2 + 6x + 9 = 0 \][/tex]
[tex]\((x + 3)^2 = 0\)[/tex]
[tex]\[ x + 3 = 0 \implies x = -3 \][/tex]
So, the value of [tex]\(x\)[/tex] is:
[tex]\[ x = -3 \][/tex]
Here you go, I have solved each part of the question systematically.
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.