Get personalized answers to your specific questions with IDNLearn.com. Get prompt and accurate answers to your questions from our community of experts who are always ready to help.

A. 200
B. -50
C. -200

Instruction III: Work out the following questions showing all the necessary steps.

21. Solve the following system of linear equations using Cramer's rule:
[tex]\[
\left\{
\begin{array}{c}
-x + 4y - z = 1 \\
2x - y + z = 0 \\
x + y + z = 1
\end{array}
\right.
\][/tex]

22. If [tex]\(\theta\)[/tex] is the angle between the vectors [tex]\(\vec{A} = i + j\)[/tex] and [tex]\(\vec{B} = -2i + 3j\)[/tex], then find [tex]\(\cos \theta\)[/tex].

23. Find the area of the parallelogram formed by the vectors [tex]\(\vec{U} = 2i + 3j + k\)[/tex] and [tex]\(\vec{V} = 4i + j + 2k\)[/tex].

24. Find the value of [tex]\(x\)[/tex], if
[tex]\[
\left|\begin{array}{cc}
x & x + 4 \\
x + 2 & 6
\end{array}\right|
= 6x + 1
\][/tex]


Sagot :

Sure, let's solve each of the questions step-by-step.

### 21. Solve the system of linear equations using Cramer's rule

Given system of equations:

1. [tex]\(-x + 4y - z = 1\)[/tex]
2. [tex]\(2x - y + z = 0\)[/tex]
3. [tex]\(x + y + z = 1\)[/tex]

Step 1: Form the coefficient and constant matrices

The coefficient matrix [tex]\(A\)[/tex] and constant vector [tex]\(\mathbf{B}\)[/tex] are:

[tex]\[ A = \begin{pmatrix} -1 & 4 & -1 \\ 2 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]

[tex]\[ \mathbf{B} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \][/tex]

Step 2: Calculate the determinant of the coefficient matrix [tex]\( \det(A) \)[/tex]

The determinant of [tex]\(A\)[/tex]:

[tex]\[ \det(A) = -5 \][/tex]

Step 3: Construct matrices for each variable and calculate their determinants

To find the determinant for each variable, modify the coefficient matrix by replacing the corresponding column with the constant vector [tex]\(\mathbf{B}\)[/tex].

- For [tex]\(x\)[/tex], replace the 1st column with [tex]\(\mathbf{B}\)[/tex]:

[tex]\[ A_x = \begin{pmatrix} 1 & 4 & -1 \\ 0 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]

[tex]\[ \det(A_x) = 1 \][/tex]

- For [tex]\(y\)[/tex], replace the 2nd column with [tex]\(\mathbf{B}\)[/tex]:

[tex]\[ A_y = \begin{pmatrix} -1 & 1 & -1 \\ 2 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]

[tex]\[ \det(A_y) = -2 \][/tex]

- For [tex]\(z\)[/tex], replace the 3rd column with [tex]\(\mathbf{B}\)[/tex]:

[tex]\[ A_z = \begin{pmatrix} -1 & 4 & 1 \\ 2 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]

[tex]\[ \det(A_z) = -4 \][/tex]

Step 4: Solve for variables [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex]

Using Cramer's rule:

[tex]\[ x = \frac{\det(A_x)}{\det(A)} = \frac{1}{-5} = -0.2 \][/tex]

[tex]\[ y = \frac{\det(A_y)}{\det(A)} = \frac{-2}{-5} = 0.4 \][/tex]

[tex]\[ z = \frac{\det(A_z)}{\det(A)} = \frac{-4}{-5} = 0.8 \][/tex]

So, the solutions are:

[tex]\[ x = -0.2, \quad y = 0.4, \quad z = 0.8 \][/tex]

### 22. Find [tex]\(\cos \theta\)[/tex]

Given vectors:
[tex]\(\vec{A} = \mathbf{i} + \mathbf{j}\)[/tex] and [tex]\(\vec{B} = -2\mathbf{i} + 3\mathbf{j}\)[/tex].

Step 1: Dot product of [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex]

[tex]\[ \vec{A} \cdot \vec{B} = (1)(-2) + (1)(3) = -2 + 3 = 1 \][/tex]

Step 2: Magnitudes of [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex]

[tex]\[ |\vec{A}| = \sqrt{1^2 + 1^2} = \sqrt{2} \][/tex]

[tex]\[ |\vec{B}| = \sqrt{(-2)^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \][/tex]

Step 3: Calculate [tex]\(\cos \theta\)[/tex]

[tex]\[ \cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|} = \frac{1}{\sqrt{2} \cdot \sqrt{13}} = \frac{1}{\sqrt{26}} \][/tex]

### 23. Find the area of the parallelogram

Given vectors:
[tex]\(\vec{U} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}\)[/tex] and [tex]\(\vec{V} = 4\mathbf{i} + \mathbf{j} + 2\mathbf{k}\)[/tex].

Step 1: Compute the cross-product [tex]\(\vec{U} \times \vec{V}\)[/tex]

[tex]\[ \vec{U} \times \vec{V} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & 1 \\ 4 & 1 & 2 \end{vmatrix} \][/tex]

[tex]\[ = \mathbf{i}(3\cdot 2 - 1\cdot 1) - \mathbf{j}(2\cdot 2 - 1\cdot 4) + \mathbf{k}(2\cdot 1 - 3\cdot 4) \][/tex]

[tex]\[ = \mathbf{i}(6 - 1) - \mathbf{j}(4 - 4) + \mathbf{k}(2 - 12) \][/tex]

[tex]\[ = 5\mathbf{i} - 0\mathbf{j} - 10\mathbf{k} \][/tex]

[tex]\[ = 5\mathbf{i} - 10\mathbf{k} \][/tex]

Step 2: Magnitude of the cross product

[tex]\[ |\vec{U} \times \vec{V}| = \sqrt{5^2 + (-10)^2} = \sqrt{25 + 100} = \sqrt{125} = 5\sqrt{5} \][/tex]

So, the area of the parallelogram is:

[tex]\[ 5\sqrt{5} \][/tex]

### 24. Find the value of [tex]\(x\)[/tex]

Given the determinant equation:

[tex]\[ \left|\begin{array}{cc} x & x+4 \\ x+2 & 6 \end{array}\right| = 6x + 1 \][/tex]

Step 1: Calculate the determinant

[tex]\[ |A| = x \cdot 6 - (x+4)(x+2) = 6x - (x^2 + 2x + 4x + 8) = 6x - (x^2 + 6x + 8) \][/tex]

[tex]\[ = 6x - x^2 - 6x - 8 = -x^2 - 8 \][/tex]

So,

[tex]\[ -x^2 - 8 = 6x + 1 \][/tex]

Step 2: Solve for [tex]\(x\)[/tex]

[tex]\[ -x^2 - 8 = 6x + 1 \][/tex]

[tex]\[ -x^2 - 6x - 8 = 1 \][/tex]

[tex]\[ -x^2 - 6x - 9 = 0 \][/tex]

[tex]\[ x^2 + 6x + 9 = 0 \][/tex]

[tex]\((x + 3)^2 = 0\)[/tex]

[tex]\[ x + 3 = 0 \implies x = -3 \][/tex]

So, the value of [tex]\(x\)[/tex] is:

[tex]\[ x = -3 \][/tex]

Here you go, I have solved each part of the question systematically.