IDNLearn.com: Where your questions meet expert answers and community support. Our experts are ready to provide in-depth answers and practical solutions to any questions you may have.
Sagot :
Sure, let's solve each of the questions step-by-step.
### 21. Solve the system of linear equations using Cramer's rule
Given system of equations:
1. [tex]\(-x + 4y - z = 1\)[/tex]
2. [tex]\(2x - y + z = 0\)[/tex]
3. [tex]\(x + y + z = 1\)[/tex]
Step 1: Form the coefficient and constant matrices
The coefficient matrix [tex]\(A\)[/tex] and constant vector [tex]\(\mathbf{B}\)[/tex] are:
[tex]\[ A = \begin{pmatrix} -1 & 4 & -1 \\ 2 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]
[tex]\[ \mathbf{B} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \][/tex]
Step 2: Calculate the determinant of the coefficient matrix [tex]\( \det(A) \)[/tex]
The determinant of [tex]\(A\)[/tex]:
[tex]\[ \det(A) = -5 \][/tex]
Step 3: Construct matrices for each variable and calculate their determinants
To find the determinant for each variable, modify the coefficient matrix by replacing the corresponding column with the constant vector [tex]\(\mathbf{B}\)[/tex].
- For [tex]\(x\)[/tex], replace the 1st column with [tex]\(\mathbf{B}\)[/tex]:
[tex]\[ A_x = \begin{pmatrix} 1 & 4 & -1 \\ 0 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]
[tex]\[ \det(A_x) = 1 \][/tex]
- For [tex]\(y\)[/tex], replace the 2nd column with [tex]\(\mathbf{B}\)[/tex]:
[tex]\[ A_y = \begin{pmatrix} -1 & 1 & -1 \\ 2 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]
[tex]\[ \det(A_y) = -2 \][/tex]
- For [tex]\(z\)[/tex], replace the 3rd column with [tex]\(\mathbf{B}\)[/tex]:
[tex]\[ A_z = \begin{pmatrix} -1 & 4 & 1 \\ 2 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]
[tex]\[ \det(A_z) = -4 \][/tex]
Step 4: Solve for variables [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex]
Using Cramer's rule:
[tex]\[ x = \frac{\det(A_x)}{\det(A)} = \frac{1}{-5} = -0.2 \][/tex]
[tex]\[ y = \frac{\det(A_y)}{\det(A)} = \frac{-2}{-5} = 0.4 \][/tex]
[tex]\[ z = \frac{\det(A_z)}{\det(A)} = \frac{-4}{-5} = 0.8 \][/tex]
So, the solutions are:
[tex]\[ x = -0.2, \quad y = 0.4, \quad z = 0.8 \][/tex]
### 22. Find [tex]\(\cos \theta\)[/tex]
Given vectors:
[tex]\(\vec{A} = \mathbf{i} + \mathbf{j}\)[/tex] and [tex]\(\vec{B} = -2\mathbf{i} + 3\mathbf{j}\)[/tex].
Step 1: Dot product of [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex]
[tex]\[ \vec{A} \cdot \vec{B} = (1)(-2) + (1)(3) = -2 + 3 = 1 \][/tex]
Step 2: Magnitudes of [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex]
[tex]\[ |\vec{A}| = \sqrt{1^2 + 1^2} = \sqrt{2} \][/tex]
[tex]\[ |\vec{B}| = \sqrt{(-2)^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \][/tex]
Step 3: Calculate [tex]\(\cos \theta\)[/tex]
[tex]\[ \cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|} = \frac{1}{\sqrt{2} \cdot \sqrt{13}} = \frac{1}{\sqrt{26}} \][/tex]
### 23. Find the area of the parallelogram
Given vectors:
[tex]\(\vec{U} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}\)[/tex] and [tex]\(\vec{V} = 4\mathbf{i} + \mathbf{j} + 2\mathbf{k}\)[/tex].
Step 1: Compute the cross-product [tex]\(\vec{U} \times \vec{V}\)[/tex]
[tex]\[ \vec{U} \times \vec{V} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & 1 \\ 4 & 1 & 2 \end{vmatrix} \][/tex]
[tex]\[ = \mathbf{i}(3\cdot 2 - 1\cdot 1) - \mathbf{j}(2\cdot 2 - 1\cdot 4) + \mathbf{k}(2\cdot 1 - 3\cdot 4) \][/tex]
[tex]\[ = \mathbf{i}(6 - 1) - \mathbf{j}(4 - 4) + \mathbf{k}(2 - 12) \][/tex]
[tex]\[ = 5\mathbf{i} - 0\mathbf{j} - 10\mathbf{k} \][/tex]
[tex]\[ = 5\mathbf{i} - 10\mathbf{k} \][/tex]
Step 2: Magnitude of the cross product
[tex]\[ |\vec{U} \times \vec{V}| = \sqrt{5^2 + (-10)^2} = \sqrt{25 + 100} = \sqrt{125} = 5\sqrt{5} \][/tex]
So, the area of the parallelogram is:
[tex]\[ 5\sqrt{5} \][/tex]
### 24. Find the value of [tex]\(x\)[/tex]
Given the determinant equation:
[tex]\[ \left|\begin{array}{cc} x & x+4 \\ x+2 & 6 \end{array}\right| = 6x + 1 \][/tex]
Step 1: Calculate the determinant
[tex]\[ |A| = x \cdot 6 - (x+4)(x+2) = 6x - (x^2 + 2x + 4x + 8) = 6x - (x^2 + 6x + 8) \][/tex]
[tex]\[ = 6x - x^2 - 6x - 8 = -x^2 - 8 \][/tex]
So,
[tex]\[ -x^2 - 8 = 6x + 1 \][/tex]
Step 2: Solve for [tex]\(x\)[/tex]
[tex]\[ -x^2 - 8 = 6x + 1 \][/tex]
[tex]\[ -x^2 - 6x - 8 = 1 \][/tex]
[tex]\[ -x^2 - 6x - 9 = 0 \][/tex]
[tex]\[ x^2 + 6x + 9 = 0 \][/tex]
[tex]\((x + 3)^2 = 0\)[/tex]
[tex]\[ x + 3 = 0 \implies x = -3 \][/tex]
So, the value of [tex]\(x\)[/tex] is:
[tex]\[ x = -3 \][/tex]
Here you go, I have solved each part of the question systematically.
### 21. Solve the system of linear equations using Cramer's rule
Given system of equations:
1. [tex]\(-x + 4y - z = 1\)[/tex]
2. [tex]\(2x - y + z = 0\)[/tex]
3. [tex]\(x + y + z = 1\)[/tex]
Step 1: Form the coefficient and constant matrices
The coefficient matrix [tex]\(A\)[/tex] and constant vector [tex]\(\mathbf{B}\)[/tex] are:
[tex]\[ A = \begin{pmatrix} -1 & 4 & -1 \\ 2 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]
[tex]\[ \mathbf{B} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \][/tex]
Step 2: Calculate the determinant of the coefficient matrix [tex]\( \det(A) \)[/tex]
The determinant of [tex]\(A\)[/tex]:
[tex]\[ \det(A) = -5 \][/tex]
Step 3: Construct matrices for each variable and calculate their determinants
To find the determinant for each variable, modify the coefficient matrix by replacing the corresponding column with the constant vector [tex]\(\mathbf{B}\)[/tex].
- For [tex]\(x\)[/tex], replace the 1st column with [tex]\(\mathbf{B}\)[/tex]:
[tex]\[ A_x = \begin{pmatrix} 1 & 4 & -1 \\ 0 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]
[tex]\[ \det(A_x) = 1 \][/tex]
- For [tex]\(y\)[/tex], replace the 2nd column with [tex]\(\mathbf{B}\)[/tex]:
[tex]\[ A_y = \begin{pmatrix} -1 & 1 & -1 \\ 2 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]
[tex]\[ \det(A_y) = -2 \][/tex]
- For [tex]\(z\)[/tex], replace the 3rd column with [tex]\(\mathbf{B}\)[/tex]:
[tex]\[ A_z = \begin{pmatrix} -1 & 4 & 1 \\ 2 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \][/tex]
[tex]\[ \det(A_z) = -4 \][/tex]
Step 4: Solve for variables [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex]
Using Cramer's rule:
[tex]\[ x = \frac{\det(A_x)}{\det(A)} = \frac{1}{-5} = -0.2 \][/tex]
[tex]\[ y = \frac{\det(A_y)}{\det(A)} = \frac{-2}{-5} = 0.4 \][/tex]
[tex]\[ z = \frac{\det(A_z)}{\det(A)} = \frac{-4}{-5} = 0.8 \][/tex]
So, the solutions are:
[tex]\[ x = -0.2, \quad y = 0.4, \quad z = 0.8 \][/tex]
### 22. Find [tex]\(\cos \theta\)[/tex]
Given vectors:
[tex]\(\vec{A} = \mathbf{i} + \mathbf{j}\)[/tex] and [tex]\(\vec{B} = -2\mathbf{i} + 3\mathbf{j}\)[/tex].
Step 1: Dot product of [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex]
[tex]\[ \vec{A} \cdot \vec{B} = (1)(-2) + (1)(3) = -2 + 3 = 1 \][/tex]
Step 2: Magnitudes of [tex]\(\vec{A}\)[/tex] and [tex]\(\vec{B}\)[/tex]
[tex]\[ |\vec{A}| = \sqrt{1^2 + 1^2} = \sqrt{2} \][/tex]
[tex]\[ |\vec{B}| = \sqrt{(-2)^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \][/tex]
Step 3: Calculate [tex]\(\cos \theta\)[/tex]
[tex]\[ \cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|} = \frac{1}{\sqrt{2} \cdot \sqrt{13}} = \frac{1}{\sqrt{26}} \][/tex]
### 23. Find the area of the parallelogram
Given vectors:
[tex]\(\vec{U} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}\)[/tex] and [tex]\(\vec{V} = 4\mathbf{i} + \mathbf{j} + 2\mathbf{k}\)[/tex].
Step 1: Compute the cross-product [tex]\(\vec{U} \times \vec{V}\)[/tex]
[tex]\[ \vec{U} \times \vec{V} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 3 & 1 \\ 4 & 1 & 2 \end{vmatrix} \][/tex]
[tex]\[ = \mathbf{i}(3\cdot 2 - 1\cdot 1) - \mathbf{j}(2\cdot 2 - 1\cdot 4) + \mathbf{k}(2\cdot 1 - 3\cdot 4) \][/tex]
[tex]\[ = \mathbf{i}(6 - 1) - \mathbf{j}(4 - 4) + \mathbf{k}(2 - 12) \][/tex]
[tex]\[ = 5\mathbf{i} - 0\mathbf{j} - 10\mathbf{k} \][/tex]
[tex]\[ = 5\mathbf{i} - 10\mathbf{k} \][/tex]
Step 2: Magnitude of the cross product
[tex]\[ |\vec{U} \times \vec{V}| = \sqrt{5^2 + (-10)^2} = \sqrt{25 + 100} = \sqrt{125} = 5\sqrt{5} \][/tex]
So, the area of the parallelogram is:
[tex]\[ 5\sqrt{5} \][/tex]
### 24. Find the value of [tex]\(x\)[/tex]
Given the determinant equation:
[tex]\[ \left|\begin{array}{cc} x & x+4 \\ x+2 & 6 \end{array}\right| = 6x + 1 \][/tex]
Step 1: Calculate the determinant
[tex]\[ |A| = x \cdot 6 - (x+4)(x+2) = 6x - (x^2 + 2x + 4x + 8) = 6x - (x^2 + 6x + 8) \][/tex]
[tex]\[ = 6x - x^2 - 6x - 8 = -x^2 - 8 \][/tex]
So,
[tex]\[ -x^2 - 8 = 6x + 1 \][/tex]
Step 2: Solve for [tex]\(x\)[/tex]
[tex]\[ -x^2 - 8 = 6x + 1 \][/tex]
[tex]\[ -x^2 - 6x - 8 = 1 \][/tex]
[tex]\[ -x^2 - 6x - 9 = 0 \][/tex]
[tex]\[ x^2 + 6x + 9 = 0 \][/tex]
[tex]\((x + 3)^2 = 0\)[/tex]
[tex]\[ x + 3 = 0 \implies x = -3 \][/tex]
So, the value of [tex]\(x\)[/tex] is:
[tex]\[ x = -3 \][/tex]
Here you go, I have solved each part of the question systematically.
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.