IDNLearn.com offers a unique blend of expert answers and community-driven knowledge. Explore a wide array of topics and find reliable answers from our experienced community members.
Sagot :
Sure, let's solve the limit step-by-step to find [tex]\( L = \lim_{{x \to 0}} \left(e^{3x} - 5x\right)^{1/x} \)[/tex].
First, the expression inside the limit is [tex]\((e^{3x} - 5x)^{1/x}\)[/tex]. To handle this, we can use the properties of logarithms and exponentials for limits.
1. Taking the natural logarithm:
Let's first take the natural logarithm of [tex]\( L \)[/tex].
[tex]\[ \ln L = \ln \left( \lim_{{x \to 0}} \left(e^{3x} - 5x\right)^{1/x} \right) \][/tex]
2. Logarithm of a limit:
Using the property of logarithms, [tex]\(\ln (a^b) = b \ln (a)\)[/tex], we have:
[tex]\[ \ln L = \lim_{{x \to 0}} \frac{\ln (e^{3x} - 5x)}{x} \][/tex]
Here, the limit and logarithm have been interchanged.
3. Expression analysis:
Let's rewrite the argument of the limit in a more workable form:
[tex]\[ \ln (e^{3x} - 5x) \][/tex]
When [tex]\( x \)[/tex] is very close to 0, [tex]\( e^{3x} \approx 1 + 3x + \frac{9x^2}{2} \)[/tex], and thus:
[tex]\[ e^{3x} - 5x \approx 1 + 3x + \frac{9x^2}{2} - 5x = 1 - 2x + \frac{9x^2}{2} \][/tex]
4. Logarithm expansion:
Using the approximation [tex]\(\ln(1 + y) \approx y\)[/tex] when [tex]\( y \)[/tex] is close to 0, we have:
[tex]\[ \ln(e^{3x} - 5x) \approx \ln\left(1 - 2x + \frac{9x^2}{2}\right) \approx -2x + \frac{9x^2}{2} \][/tex]
5. Simplifying the limit:
Plug the approximate value of the logarithm back into our limit expression:
[tex]\[ \ln L \approx \lim_{{x \to 0}} \frac{-2x + \frac{9x^2}{2}}{x} = \lim_{{x \to 0}} \left( -2 + \frac{9x}{2} \right) \][/tex]
As [tex]\( x \)[/tex] approaches 0, the term [tex]\(\frac{9x}{2}\)[/tex] becomes negligible:
[tex]\[ \ln L = -2 \][/tex]
6. Exponentiating to remove the logarithm:
Finally, to find [tex]\( L \)[/tex], we exponentiate both sides:
[tex]\[ L = e^{-2} \][/tex]
Therefore, the limit is:
[tex]\[ L = \lim_{{x \to 0}} \left(e^{3x} - 5x\right)^{1/x} = e^{-2} \][/tex]
So, the value of the limit is [tex]\( e^{-2} \)[/tex].
First, the expression inside the limit is [tex]\((e^{3x} - 5x)^{1/x}\)[/tex]. To handle this, we can use the properties of logarithms and exponentials for limits.
1. Taking the natural logarithm:
Let's first take the natural logarithm of [tex]\( L \)[/tex].
[tex]\[ \ln L = \ln \left( \lim_{{x \to 0}} \left(e^{3x} - 5x\right)^{1/x} \right) \][/tex]
2. Logarithm of a limit:
Using the property of logarithms, [tex]\(\ln (a^b) = b \ln (a)\)[/tex], we have:
[tex]\[ \ln L = \lim_{{x \to 0}} \frac{\ln (e^{3x} - 5x)}{x} \][/tex]
Here, the limit and logarithm have been interchanged.
3. Expression analysis:
Let's rewrite the argument of the limit in a more workable form:
[tex]\[ \ln (e^{3x} - 5x) \][/tex]
When [tex]\( x \)[/tex] is very close to 0, [tex]\( e^{3x} \approx 1 + 3x + \frac{9x^2}{2} \)[/tex], and thus:
[tex]\[ e^{3x} - 5x \approx 1 + 3x + \frac{9x^2}{2} - 5x = 1 - 2x + \frac{9x^2}{2} \][/tex]
4. Logarithm expansion:
Using the approximation [tex]\(\ln(1 + y) \approx y\)[/tex] when [tex]\( y \)[/tex] is close to 0, we have:
[tex]\[ \ln(e^{3x} - 5x) \approx \ln\left(1 - 2x + \frac{9x^2}{2}\right) \approx -2x + \frac{9x^2}{2} \][/tex]
5. Simplifying the limit:
Plug the approximate value of the logarithm back into our limit expression:
[tex]\[ \ln L \approx \lim_{{x \to 0}} \frac{-2x + \frac{9x^2}{2}}{x} = \lim_{{x \to 0}} \left( -2 + \frac{9x}{2} \right) \][/tex]
As [tex]\( x \)[/tex] approaches 0, the term [tex]\(\frac{9x}{2}\)[/tex] becomes negligible:
[tex]\[ \ln L = -2 \][/tex]
6. Exponentiating to remove the logarithm:
Finally, to find [tex]\( L \)[/tex], we exponentiate both sides:
[tex]\[ L = e^{-2} \][/tex]
Therefore, the limit is:
[tex]\[ L = \lim_{{x \to 0}} \left(e^{3x} - 5x\right)^{1/x} = e^{-2} \][/tex]
So, the value of the limit is [tex]\( e^{-2} \)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com has the solutions you’re looking for. Thanks for visiting, and see you next time for more reliable information.