Get the answers you've been searching for with IDNLearn.com. Ask your questions and receive comprehensive, trustworthy responses from our dedicated team of experts.
Sagot :
Sure, let's solve the limit step-by-step to find [tex]\( L = \lim_{{x \to 0}} \left(e^{3x} - 5x\right)^{1/x} \)[/tex].
First, the expression inside the limit is [tex]\((e^{3x} - 5x)^{1/x}\)[/tex]. To handle this, we can use the properties of logarithms and exponentials for limits.
1. Taking the natural logarithm:
Let's first take the natural logarithm of [tex]\( L \)[/tex].
[tex]\[ \ln L = \ln \left( \lim_{{x \to 0}} \left(e^{3x} - 5x\right)^{1/x} \right) \][/tex]
2. Logarithm of a limit:
Using the property of logarithms, [tex]\(\ln (a^b) = b \ln (a)\)[/tex], we have:
[tex]\[ \ln L = \lim_{{x \to 0}} \frac{\ln (e^{3x} - 5x)}{x} \][/tex]
Here, the limit and logarithm have been interchanged.
3. Expression analysis:
Let's rewrite the argument of the limit in a more workable form:
[tex]\[ \ln (e^{3x} - 5x) \][/tex]
When [tex]\( x \)[/tex] is very close to 0, [tex]\( e^{3x} \approx 1 + 3x + \frac{9x^2}{2} \)[/tex], and thus:
[tex]\[ e^{3x} - 5x \approx 1 + 3x + \frac{9x^2}{2} - 5x = 1 - 2x + \frac{9x^2}{2} \][/tex]
4. Logarithm expansion:
Using the approximation [tex]\(\ln(1 + y) \approx y\)[/tex] when [tex]\( y \)[/tex] is close to 0, we have:
[tex]\[ \ln(e^{3x} - 5x) \approx \ln\left(1 - 2x + \frac{9x^2}{2}\right) \approx -2x + \frac{9x^2}{2} \][/tex]
5. Simplifying the limit:
Plug the approximate value of the logarithm back into our limit expression:
[tex]\[ \ln L \approx \lim_{{x \to 0}} \frac{-2x + \frac{9x^2}{2}}{x} = \lim_{{x \to 0}} \left( -2 + \frac{9x}{2} \right) \][/tex]
As [tex]\( x \)[/tex] approaches 0, the term [tex]\(\frac{9x}{2}\)[/tex] becomes negligible:
[tex]\[ \ln L = -2 \][/tex]
6. Exponentiating to remove the logarithm:
Finally, to find [tex]\( L \)[/tex], we exponentiate both sides:
[tex]\[ L = e^{-2} \][/tex]
Therefore, the limit is:
[tex]\[ L = \lim_{{x \to 0}} \left(e^{3x} - 5x\right)^{1/x} = e^{-2} \][/tex]
So, the value of the limit is [tex]\( e^{-2} \)[/tex].
First, the expression inside the limit is [tex]\((e^{3x} - 5x)^{1/x}\)[/tex]. To handle this, we can use the properties of logarithms and exponentials for limits.
1. Taking the natural logarithm:
Let's first take the natural logarithm of [tex]\( L \)[/tex].
[tex]\[ \ln L = \ln \left( \lim_{{x \to 0}} \left(e^{3x} - 5x\right)^{1/x} \right) \][/tex]
2. Logarithm of a limit:
Using the property of logarithms, [tex]\(\ln (a^b) = b \ln (a)\)[/tex], we have:
[tex]\[ \ln L = \lim_{{x \to 0}} \frac{\ln (e^{3x} - 5x)}{x} \][/tex]
Here, the limit and logarithm have been interchanged.
3. Expression analysis:
Let's rewrite the argument of the limit in a more workable form:
[tex]\[ \ln (e^{3x} - 5x) \][/tex]
When [tex]\( x \)[/tex] is very close to 0, [tex]\( e^{3x} \approx 1 + 3x + \frac{9x^2}{2} \)[/tex], and thus:
[tex]\[ e^{3x} - 5x \approx 1 + 3x + \frac{9x^2}{2} - 5x = 1 - 2x + \frac{9x^2}{2} \][/tex]
4. Logarithm expansion:
Using the approximation [tex]\(\ln(1 + y) \approx y\)[/tex] when [tex]\( y \)[/tex] is close to 0, we have:
[tex]\[ \ln(e^{3x} - 5x) \approx \ln\left(1 - 2x + \frac{9x^2}{2}\right) \approx -2x + \frac{9x^2}{2} \][/tex]
5. Simplifying the limit:
Plug the approximate value of the logarithm back into our limit expression:
[tex]\[ \ln L \approx \lim_{{x \to 0}} \frac{-2x + \frac{9x^2}{2}}{x} = \lim_{{x \to 0}} \left( -2 + \frac{9x}{2} \right) \][/tex]
As [tex]\( x \)[/tex] approaches 0, the term [tex]\(\frac{9x}{2}\)[/tex] becomes negligible:
[tex]\[ \ln L = -2 \][/tex]
6. Exponentiating to remove the logarithm:
Finally, to find [tex]\( L \)[/tex], we exponentiate both sides:
[tex]\[ L = e^{-2} \][/tex]
Therefore, the limit is:
[tex]\[ L = \lim_{{x \to 0}} \left(e^{3x} - 5x\right)^{1/x} = e^{-2} \][/tex]
So, the value of the limit is [tex]\( e^{-2} \)[/tex].
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Your search for answers ends at IDNLearn.com. Thank you for visiting, and we hope to assist you again soon.