Find the best answers to your questions with the help of IDNLearn.com's expert contributors. Get timely and accurate answers to your questions from our dedicated community of experts who are here to help you.

Using the equations below:
[tex]\[
\begin{array}{l}
Cu(s) + \frac{1}{2} O_2(g) \rightarrow CuO(s), \Delta H^{\circ} = -156 \, \text{kJ} \\
2 Cu(s) + \frac{1}{2} O_2(g) \rightarrow Cu_2O(s), \Delta H^{\circ} = -170 \, \text{kJ}
\end{array}
\][/tex]

What is the value of [tex]$\Delta H^{\circ}$[/tex] (in kJ) for the following reaction?

[tex]\[
2 CuO(s) \rightarrow Cu_2O(s) + \frac{1}{2} O_2(g)
\][/tex]

A. 142
B. 15
C. -15
D. -142


Sagot :

To determine the value of [tex]\(\Delta H^{\circ}\)[/tex] for the reaction [tex]\(2 \ \text{CuO(s)} \rightarrow \text{Cu}_2\text{O(s)} + \frac{1}{2} \text{O}_2\text{(g)}\)[/tex], we can use the given reactions and Hess's Law. Hess's Law states that if a reaction is carried out in a series of steps, the [tex]\(\Delta H\)[/tex] for the overall reaction is the sum of the [tex]\(\Delta H\)[/tex] values for each step.

Given reactions:
1. [tex]\(\text{Cu(s)} + \frac{1}{2} \text{O}_2\text{(g)} \rightarrow \text{CuO(s)}, \quad \Delta H^{\circ} = -156 \ \text{kJ}\)[/tex]
2. [tex]\(\text{2Cu(s)} + \frac{1}{2} \text{O}_2\text{(g)} \rightarrow \text{Cu}_2\text{O(s)}, \quad \Delta H^{\circ} = -170 \ \text{kJ}\)[/tex]

We need to find [tex]\(\Delta H^{\circ}\)[/tex] for:
[tex]\[2 \ \text{CuO(s)} \rightarrow \text{Cu}_2\text{O(s)} + \frac{1}{2} \text{O}_2\text{(g)}\][/tex]

Step 1: Reverse the first given reaction to form [tex]\(\text{CuO(s)}\)[/tex] as a reactant:
[tex]\[\text{CuO(s)} \rightarrow \text{Cu(s)} + \frac{1}{2} \text{O}_2\text{(g)}, \quad \Delta H^{\circ} = +156 \ \text{kJ}\][/tex]

Step 2: Multiply the reversed reaction by 2 to match the stoichiometry of [tex]\(\text{CuO(s)}\)[/tex] in the desired reaction:
[tex]\[2 \ \text{CuO(s)} \rightarrow 2 \ \text{Cu(s)} + \text{O}_2\text{(g)}, \quad \Delta H^{\circ} = 2 \times 156 \ \text{kJ} = +312 \ \text{kJ}\][/tex]

Step 3: Combine the modified first reaction with the second given reaction. The second reaction does not need to be altered:
[tex]\[2 \ \text{Cu(s)} + \frac{1}{2} \text{O}_2\text{(g)} \rightarrow \text{Cu}_2\text{O(s)}, \quad \Delta H^{\circ} = -170 \ \text{kJ}\][/tex]

Adding these reactions together, we get:
[tex]\[ 2 \ \text{CuO(s)} \rightarrow 2 \ \text{Cu(s)} + \text{O}_2\text{(g)}, \quad \Delta H^{\circ} = +312 \ \text{kJ} \\ 2 \ \text{Cu(s)} + \frac{1}{2} \text{O}_2\text{(g)} \rightarrow \text{Cu}_2\text{O(s)}, \quad \Delta H^{\circ} = -170 \ \text{kJ} \][/tex]

When combined:
[tex]\[ 2 \ \text{CuO(s)} + 2 \ \text{Cu(s)} + \text{O}_2\text{(g)} \rightarrow 2 \ \text{Cu(s)} + \text{Cu}_2\text{O(s)} + \frac{1}{2} \ \text{O}_2\text{(g)}, \quad \Delta H^{\circ} = +312 \ \text{kJ} - 170 \ \text{kJ} \][/tex]

Simplify the equation by canceling out common terms:
[tex]\[ 2 \ \text{CuO(s)} \rightarrow \text{Cu}_2\text{O(s)} + \frac{1}{2} \text{O}_2\text{(g)}, \quad \Delta H^{\circ} = 312 \ \text{kJ} - 170 \ \text{kJ} = +142 \ \text{kJ} \][/tex]

Therefore, the value of [tex]\(\Delta H^{\circ}\)[/tex] for the reaction [tex]\(2 \ \text{CuO(s)} \rightarrow \text{Cu}_2\text{O(s)} + \frac{1}{2} \text{O}_2\text{(g)}\)[/tex] is [tex]\(+142 \ \text{kJ}\)[/tex].

The correct answer is [tex]\( A. \ 142 \)[/tex].