IDNLearn.com is designed to help you find reliable answers quickly and easily. Join our community to receive timely and reliable responses to your questions from knowledgeable professionals.
Sagot :
To determine the value of [tex]\(\Delta H^{\circ}\)[/tex] for the reaction [tex]\(2 \ \text{CuO(s)} \rightarrow \text{Cu}_2\text{O(s)} + \frac{1}{2} \text{O}_2\text{(g)}\)[/tex], we can use the given reactions and Hess's Law. Hess's Law states that if a reaction is carried out in a series of steps, the [tex]\(\Delta H\)[/tex] for the overall reaction is the sum of the [tex]\(\Delta H\)[/tex] values for each step.
Given reactions:
1. [tex]\(\text{Cu(s)} + \frac{1}{2} \text{O}_2\text{(g)} \rightarrow \text{CuO(s)}, \quad \Delta H^{\circ} = -156 \ \text{kJ}\)[/tex]
2. [tex]\(\text{2Cu(s)} + \frac{1}{2} \text{O}_2\text{(g)} \rightarrow \text{Cu}_2\text{O(s)}, \quad \Delta H^{\circ} = -170 \ \text{kJ}\)[/tex]
We need to find [tex]\(\Delta H^{\circ}\)[/tex] for:
[tex]\[2 \ \text{CuO(s)} \rightarrow \text{Cu}_2\text{O(s)} + \frac{1}{2} \text{O}_2\text{(g)}\][/tex]
Step 1: Reverse the first given reaction to form [tex]\(\text{CuO(s)}\)[/tex] as a reactant:
[tex]\[\text{CuO(s)} \rightarrow \text{Cu(s)} + \frac{1}{2} \text{O}_2\text{(g)}, \quad \Delta H^{\circ} = +156 \ \text{kJ}\][/tex]
Step 2: Multiply the reversed reaction by 2 to match the stoichiometry of [tex]\(\text{CuO(s)}\)[/tex] in the desired reaction:
[tex]\[2 \ \text{CuO(s)} \rightarrow 2 \ \text{Cu(s)} + \text{O}_2\text{(g)}, \quad \Delta H^{\circ} = 2 \times 156 \ \text{kJ} = +312 \ \text{kJ}\][/tex]
Step 3: Combine the modified first reaction with the second given reaction. The second reaction does not need to be altered:
[tex]\[2 \ \text{Cu(s)} + \frac{1}{2} \text{O}_2\text{(g)} \rightarrow \text{Cu}_2\text{O(s)}, \quad \Delta H^{\circ} = -170 \ \text{kJ}\][/tex]
Adding these reactions together, we get:
[tex]\[ 2 \ \text{CuO(s)} \rightarrow 2 \ \text{Cu(s)} + \text{O}_2\text{(g)}, \quad \Delta H^{\circ} = +312 \ \text{kJ} \\ 2 \ \text{Cu(s)} + \frac{1}{2} \text{O}_2\text{(g)} \rightarrow \text{Cu}_2\text{O(s)}, \quad \Delta H^{\circ} = -170 \ \text{kJ} \][/tex]
When combined:
[tex]\[ 2 \ \text{CuO(s)} + 2 \ \text{Cu(s)} + \text{O}_2\text{(g)} \rightarrow 2 \ \text{Cu(s)} + \text{Cu}_2\text{O(s)} + \frac{1}{2} \ \text{O}_2\text{(g)}, \quad \Delta H^{\circ} = +312 \ \text{kJ} - 170 \ \text{kJ} \][/tex]
Simplify the equation by canceling out common terms:
[tex]\[ 2 \ \text{CuO(s)} \rightarrow \text{Cu}_2\text{O(s)} + \frac{1}{2} \text{O}_2\text{(g)}, \quad \Delta H^{\circ} = 312 \ \text{kJ} - 170 \ \text{kJ} = +142 \ \text{kJ} \][/tex]
Therefore, the value of [tex]\(\Delta H^{\circ}\)[/tex] for the reaction [tex]\(2 \ \text{CuO(s)} \rightarrow \text{Cu}_2\text{O(s)} + \frac{1}{2} \text{O}_2\text{(g)}\)[/tex] is [tex]\(+142 \ \text{kJ}\)[/tex].
The correct answer is [tex]\( A. \ 142 \)[/tex].
Given reactions:
1. [tex]\(\text{Cu(s)} + \frac{1}{2} \text{O}_2\text{(g)} \rightarrow \text{CuO(s)}, \quad \Delta H^{\circ} = -156 \ \text{kJ}\)[/tex]
2. [tex]\(\text{2Cu(s)} + \frac{1}{2} \text{O}_2\text{(g)} \rightarrow \text{Cu}_2\text{O(s)}, \quad \Delta H^{\circ} = -170 \ \text{kJ}\)[/tex]
We need to find [tex]\(\Delta H^{\circ}\)[/tex] for:
[tex]\[2 \ \text{CuO(s)} \rightarrow \text{Cu}_2\text{O(s)} + \frac{1}{2} \text{O}_2\text{(g)}\][/tex]
Step 1: Reverse the first given reaction to form [tex]\(\text{CuO(s)}\)[/tex] as a reactant:
[tex]\[\text{CuO(s)} \rightarrow \text{Cu(s)} + \frac{1}{2} \text{O}_2\text{(g)}, \quad \Delta H^{\circ} = +156 \ \text{kJ}\][/tex]
Step 2: Multiply the reversed reaction by 2 to match the stoichiometry of [tex]\(\text{CuO(s)}\)[/tex] in the desired reaction:
[tex]\[2 \ \text{CuO(s)} \rightarrow 2 \ \text{Cu(s)} + \text{O}_2\text{(g)}, \quad \Delta H^{\circ} = 2 \times 156 \ \text{kJ} = +312 \ \text{kJ}\][/tex]
Step 3: Combine the modified first reaction with the second given reaction. The second reaction does not need to be altered:
[tex]\[2 \ \text{Cu(s)} + \frac{1}{2} \text{O}_2\text{(g)} \rightarrow \text{Cu}_2\text{O(s)}, \quad \Delta H^{\circ} = -170 \ \text{kJ}\][/tex]
Adding these reactions together, we get:
[tex]\[ 2 \ \text{CuO(s)} \rightarrow 2 \ \text{Cu(s)} + \text{O}_2\text{(g)}, \quad \Delta H^{\circ} = +312 \ \text{kJ} \\ 2 \ \text{Cu(s)} + \frac{1}{2} \text{O}_2\text{(g)} \rightarrow \text{Cu}_2\text{O(s)}, \quad \Delta H^{\circ} = -170 \ \text{kJ} \][/tex]
When combined:
[tex]\[ 2 \ \text{CuO(s)} + 2 \ \text{Cu(s)} + \text{O}_2\text{(g)} \rightarrow 2 \ \text{Cu(s)} + \text{Cu}_2\text{O(s)} + \frac{1}{2} \ \text{O}_2\text{(g)}, \quad \Delta H^{\circ} = +312 \ \text{kJ} - 170 \ \text{kJ} \][/tex]
Simplify the equation by canceling out common terms:
[tex]\[ 2 \ \text{CuO(s)} \rightarrow \text{Cu}_2\text{O(s)} + \frac{1}{2} \text{O}_2\text{(g)}, \quad \Delta H^{\circ} = 312 \ \text{kJ} - 170 \ \text{kJ} = +142 \ \text{kJ} \][/tex]
Therefore, the value of [tex]\(\Delta H^{\circ}\)[/tex] for the reaction [tex]\(2 \ \text{CuO(s)} \rightarrow \text{Cu}_2\text{O(s)} + \frac{1}{2} \text{O}_2\text{(g)}\)[/tex] is [tex]\(+142 \ \text{kJ}\)[/tex].
The correct answer is [tex]\( A. \ 142 \)[/tex].
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.