Get expert insights and reliable answers to your questions on IDNLearn.com. Join our community to receive prompt, thorough responses from knowledgeable experts.
Sagot :
Certainly! Let's go through a detailed, step-by-step solution to find the speeds of the fragments after the explosion.
Step 1: Understand the problem.
- Initial mass of the shell: [tex]\( m \)[/tex].
- Initial velocity of the shell: [tex]\( u \)[/tex].
- Energy generated by the internal explosion: [tex]\( E \)[/tex].
- Masses of the fragments after the explosion: in the ratio [tex]\( m_1 : m_2 \)[/tex]. This means if we denote the masses as [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] respectively, then total mass [tex]\( M = m_1 + m_2 \)[/tex].
Step 2: Conservation of Momentum.
The total momentum before and after the explosion must be conserved. Initially, the momentum of the shell is:
[tex]\[ \text{Initial momentum} = m \cdot u = (m_1 + m_2) \cdot u = (m_1 + m_2)u \][/tex]
Let [tex]\( v_1 \)[/tex] be the velocity of the fragment of mass [tex]\( m_1 \)[/tex] after the explosion and [tex]\( v_2 \)[/tex] be the velocity of the fragment of mass [tex]\( m_2 \)[/tex] after the explosion.
Then the total momentum after the explosion is:
[tex]\[ \text{Final momentum} = m_1 \cdot v_1 + m_2 \cdot v_2 \][/tex]
Since momentum is conserved:
[tex]\[ (m_1 + m_2)u = m_1 v_1 + m_2 v_2 \][/tex]
Step 3: Energy dispersion.
The energy generated by the explosion is [tex]\( E \)[/tex]. This energy is used to change the kinetic energy of the fragments.
Initial kinetic energy of the shell is:
[tex]\[ \frac{1}{2} m u^2 = \frac{1}{2} (m_1 + m_2) u^2 \][/tex]
Final kinetic energy of the fragments is:
[tex]\[ \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 \][/tex]
Increase in kinetic energy is equal to the energy released by the explosion:
[tex]\[ \left( \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 \right) - \frac{1}{2} (m_1 + m_2) u^2 = E \][/tex]
Step 4: Solve for the velocities.
From the conservation of momentum:
[tex]\[ (m_1 + m_2)u = m_1 v_1 + m_2 v_2 \][/tex]
From the conservation of energy:
[tex]\[ \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 - \frac{1}{2} (m_1 + m_2)u^2 = E \][/tex]
First, rearrange the momentum equation to isolate one of the velocities (say [tex]\( v_1 \)[/tex]):
[tex]\[ v_1 = \frac{(m_1 + m_2)u - m_2 v_2}{m_1} \][/tex]
Next, substitute [tex]\( v_1 \)[/tex] into the energy equation:
[tex]\[ \frac{1}{2} m_1 \left( \frac{(m_1 + m_2)u - m_2 v_2}{m_1} \right)^2 + \frac{1}{2} m_2 v_2^2 - \frac{1}{2} (m_1 + m_2)u^2 = E \][/tex]
Simplifying this will result in:
[tex]\[ \frac{1}{2} \left( \frac{(m_1 + m_2)u - m_2 v_2}{1} \right)^2 + \frac{1}{2} m_2 v_2^2 - \frac{1}{2} (m_1 + m_2)u^2 = E \][/tex]
Through careful algebraic manipulation and solving, we obtain the velocities:
[tex]\[ v_1 = u + \sqrt{\frac{2 m_2 E}{m_2 (m_1 + m_2)}} = u + \sqrt{\frac{2E}{m_1 + m_2}} \][/tex]
and
[tex]\[ v_2 = u - \sqrt{\frac{2 m_1 E}{m_2 (m_1 + m_2)}} = u - \sqrt{\frac{2E m_1}{m_2 (m_1 + m_2)}} \][/tex]
These equations describe the velocities of the fragments after the internal explosion.
Step 1: Understand the problem.
- Initial mass of the shell: [tex]\( m \)[/tex].
- Initial velocity of the shell: [tex]\( u \)[/tex].
- Energy generated by the internal explosion: [tex]\( E \)[/tex].
- Masses of the fragments after the explosion: in the ratio [tex]\( m_1 : m_2 \)[/tex]. This means if we denote the masses as [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] respectively, then total mass [tex]\( M = m_1 + m_2 \)[/tex].
Step 2: Conservation of Momentum.
The total momentum before and after the explosion must be conserved. Initially, the momentum of the shell is:
[tex]\[ \text{Initial momentum} = m \cdot u = (m_1 + m_2) \cdot u = (m_1 + m_2)u \][/tex]
Let [tex]\( v_1 \)[/tex] be the velocity of the fragment of mass [tex]\( m_1 \)[/tex] after the explosion and [tex]\( v_2 \)[/tex] be the velocity of the fragment of mass [tex]\( m_2 \)[/tex] after the explosion.
Then the total momentum after the explosion is:
[tex]\[ \text{Final momentum} = m_1 \cdot v_1 + m_2 \cdot v_2 \][/tex]
Since momentum is conserved:
[tex]\[ (m_1 + m_2)u = m_1 v_1 + m_2 v_2 \][/tex]
Step 3: Energy dispersion.
The energy generated by the explosion is [tex]\( E \)[/tex]. This energy is used to change the kinetic energy of the fragments.
Initial kinetic energy of the shell is:
[tex]\[ \frac{1}{2} m u^2 = \frac{1}{2} (m_1 + m_2) u^2 \][/tex]
Final kinetic energy of the fragments is:
[tex]\[ \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 \][/tex]
Increase in kinetic energy is equal to the energy released by the explosion:
[tex]\[ \left( \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 \right) - \frac{1}{2} (m_1 + m_2) u^2 = E \][/tex]
Step 4: Solve for the velocities.
From the conservation of momentum:
[tex]\[ (m_1 + m_2)u = m_1 v_1 + m_2 v_2 \][/tex]
From the conservation of energy:
[tex]\[ \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 - \frac{1}{2} (m_1 + m_2)u^2 = E \][/tex]
First, rearrange the momentum equation to isolate one of the velocities (say [tex]\( v_1 \)[/tex]):
[tex]\[ v_1 = \frac{(m_1 + m_2)u - m_2 v_2}{m_1} \][/tex]
Next, substitute [tex]\( v_1 \)[/tex] into the energy equation:
[tex]\[ \frac{1}{2} m_1 \left( \frac{(m_1 + m_2)u - m_2 v_2}{m_1} \right)^2 + \frac{1}{2} m_2 v_2^2 - \frac{1}{2} (m_1 + m_2)u^2 = E \][/tex]
Simplifying this will result in:
[tex]\[ \frac{1}{2} \left( \frac{(m_1 + m_2)u - m_2 v_2}{1} \right)^2 + \frac{1}{2} m_2 v_2^2 - \frac{1}{2} (m_1 + m_2)u^2 = E \][/tex]
Through careful algebraic manipulation and solving, we obtain the velocities:
[tex]\[ v_1 = u + \sqrt{\frac{2 m_2 E}{m_2 (m_1 + m_2)}} = u + \sqrt{\frac{2E}{m_1 + m_2}} \][/tex]
and
[tex]\[ v_2 = u - \sqrt{\frac{2 m_1 E}{m_2 (m_1 + m_2)}} = u - \sqrt{\frac{2E m_1}{m_2 (m_1 + m_2)}} \][/tex]
These equations describe the velocities of the fragments after the internal explosion.
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! For dependable answers, trust IDNLearn.com. Thank you for visiting, and we look forward to helping you again soon.