Explore a diverse range of topics and get expert answers on IDNLearn.com. Ask your questions and receive reliable and comprehensive answers from our dedicated community of professionals.
Sagot :
Alright, let’s solve the problem step-by-step.
### Step 1: Correct the Table of the Probability Distribution
First, let’s rewrite the properly formatted table for the given discrete random variable [tex]\( X \)[/tex].
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline X & -1 & 0 & 2 & 5 & 6 \\ \hline P(X) & 0.1 & 0.05 & 0.15 & 0.4 & 0.3 \\ \hline \end{array} \][/tex]
This table shows the values that [tex]\( X \)[/tex] can take and their respective probabilities.
### Step 2: Verify the Probability Distribution
The probabilities should sum to 1 to confirm that this is a valid probability distribution. Adding these probabilities:
[tex]\[ 0.1 + 0.05 + 0.15 + 0.4 + 0.3 = 1 \][/tex]
This confirms the table represents a valid probability distribution.
### Step 3: Calculate the Mean ([tex]\(\mu\)[/tex])
The mean (or expected value) is given by:
[tex]\[ \mu = E[X] = \sum (x \cdot P(x)) \][/tex]
Substituting the given values:
[tex]\[ \mu = (-1 \cdot 0.1) + (0 \cdot 0.05) + (2 \cdot 0.15) + (5 \cdot 0.4) + (6 \cdot 0.3) \][/tex]
[tex]\[ = -0.1 + 0 + 0.3 + 2 + 1.8 \][/tex]
[tex]\[ = 4.0 \][/tex]
So, the mean is [tex]\( \mu = 4.0 \)[/tex].
### Step 4: Calculate the Second Moment
The second moment about the origin is:
[tex]\[ E[X^2] = \sum (x^2 \cdot P(x)) \][/tex]
Substituting the given values:
[tex]\[ E[X^2] = ((-1)^2 \cdot 0.1) + (0^2 \cdot 0.05) + (2^2 \cdot 0.15) + (5^2 \cdot 0.4) + (6^2 \cdot 0.3) \][/tex]
[tex]\[ = (1 \cdot 0.1) + (0 \cdot 0.05) + (4 \cdot 0.15) + (25 \cdot 0.4) + (36 \cdot 0.3) \][/tex]
[tex]\[ = 0.1 + 0 + 0.6 + 10 + 10.8 \][/tex]
[tex]\[ = 21.5 \][/tex]
### Step 5: Calculate the Variance ([tex]\(\sigma^2\)[/tex])
The variance is given by:
[tex]\[ \sigma^2 = E[X^2] - (E[X])^2 \][/tex]
Substituting the values:
[tex]\[ \sigma^2 = 21.5 - (4.0)^2 \][/tex]
[tex]\[ = 21.5 - 16 \][/tex]
[tex]\[ = 5.5 \][/tex]
So, the variance is [tex]\( \sigma^2 = 5.5 \)[/tex].
### Step 6: Find the Moment Generating Function (MGF)
The moment generating function [tex]\( M_X(t) \)[/tex] for a discrete random variable [tex]\( X \)[/tex] is given by:
[tex]\[ M_X(t) = E[e^{tX}] = \sum e^{tx}P(x) \][/tex]
For this random variable [tex]\( X \)[/tex]:
[tex]\[ M_X(t) = (e^{-t} \cdot 0.1) + (e^{0 \cdot t} \cdot 0.05) + (e^{2t} \cdot 0.15) + (e^{5t} \cdot 0.4) + (e^{6t} \cdot 0.3) \][/tex]
### Step 7: Evaluate the MGF at [tex]\( t = 0 \)[/tex]
By definition, [tex]\( M_X(0) \)[/tex] should be 1, as:
[tex]\[ M_X(0) = \sum e^{0 \cdot x} P(x) = \sum 1 \cdot P(x) = \sum P(x) = 1 \][/tex]
So,
[tex]\[ M_X(0) = 1.0 \][/tex]
### Summary:
- Mean ([tex]\(\mu\)[/tex]): [tex]\( 4.0 \)[/tex]
- Variance ([tex]\(\sigma^2\)[/tex]): [tex]\( 5.5 \)[/tex]
- MGF evaluated at [tex]\( t=0 \)[/tex]: [tex]\( 1.0 \)[/tex]
Thus, we have successfully determined the mean, variance, and moment generating function [tex]\( M_X(t) \)[/tex] of the discrete random variable [tex]\( X \)[/tex].
### Step 1: Correct the Table of the Probability Distribution
First, let’s rewrite the properly formatted table for the given discrete random variable [tex]\( X \)[/tex].
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline X & -1 & 0 & 2 & 5 & 6 \\ \hline P(X) & 0.1 & 0.05 & 0.15 & 0.4 & 0.3 \\ \hline \end{array} \][/tex]
This table shows the values that [tex]\( X \)[/tex] can take and their respective probabilities.
### Step 2: Verify the Probability Distribution
The probabilities should sum to 1 to confirm that this is a valid probability distribution. Adding these probabilities:
[tex]\[ 0.1 + 0.05 + 0.15 + 0.4 + 0.3 = 1 \][/tex]
This confirms the table represents a valid probability distribution.
### Step 3: Calculate the Mean ([tex]\(\mu\)[/tex])
The mean (or expected value) is given by:
[tex]\[ \mu = E[X] = \sum (x \cdot P(x)) \][/tex]
Substituting the given values:
[tex]\[ \mu = (-1 \cdot 0.1) + (0 \cdot 0.05) + (2 \cdot 0.15) + (5 \cdot 0.4) + (6 \cdot 0.3) \][/tex]
[tex]\[ = -0.1 + 0 + 0.3 + 2 + 1.8 \][/tex]
[tex]\[ = 4.0 \][/tex]
So, the mean is [tex]\( \mu = 4.0 \)[/tex].
### Step 4: Calculate the Second Moment
The second moment about the origin is:
[tex]\[ E[X^2] = \sum (x^2 \cdot P(x)) \][/tex]
Substituting the given values:
[tex]\[ E[X^2] = ((-1)^2 \cdot 0.1) + (0^2 \cdot 0.05) + (2^2 \cdot 0.15) + (5^2 \cdot 0.4) + (6^2 \cdot 0.3) \][/tex]
[tex]\[ = (1 \cdot 0.1) + (0 \cdot 0.05) + (4 \cdot 0.15) + (25 \cdot 0.4) + (36 \cdot 0.3) \][/tex]
[tex]\[ = 0.1 + 0 + 0.6 + 10 + 10.8 \][/tex]
[tex]\[ = 21.5 \][/tex]
### Step 5: Calculate the Variance ([tex]\(\sigma^2\)[/tex])
The variance is given by:
[tex]\[ \sigma^2 = E[X^2] - (E[X])^2 \][/tex]
Substituting the values:
[tex]\[ \sigma^2 = 21.5 - (4.0)^2 \][/tex]
[tex]\[ = 21.5 - 16 \][/tex]
[tex]\[ = 5.5 \][/tex]
So, the variance is [tex]\( \sigma^2 = 5.5 \)[/tex].
### Step 6: Find the Moment Generating Function (MGF)
The moment generating function [tex]\( M_X(t) \)[/tex] for a discrete random variable [tex]\( X \)[/tex] is given by:
[tex]\[ M_X(t) = E[e^{tX}] = \sum e^{tx}P(x) \][/tex]
For this random variable [tex]\( X \)[/tex]:
[tex]\[ M_X(t) = (e^{-t} \cdot 0.1) + (e^{0 \cdot t} \cdot 0.05) + (e^{2t} \cdot 0.15) + (e^{5t} \cdot 0.4) + (e^{6t} \cdot 0.3) \][/tex]
### Step 7: Evaluate the MGF at [tex]\( t = 0 \)[/tex]
By definition, [tex]\( M_X(0) \)[/tex] should be 1, as:
[tex]\[ M_X(0) = \sum e^{0 \cdot x} P(x) = \sum 1 \cdot P(x) = \sum P(x) = 1 \][/tex]
So,
[tex]\[ M_X(0) = 1.0 \][/tex]
### Summary:
- Mean ([tex]\(\mu\)[/tex]): [tex]\( 4.0 \)[/tex]
- Variance ([tex]\(\sigma^2\)[/tex]): [tex]\( 5.5 \)[/tex]
- MGF evaluated at [tex]\( t=0 \)[/tex]: [tex]\( 1.0 \)[/tex]
Thus, we have successfully determined the mean, variance, and moment generating function [tex]\( M_X(t) \)[/tex] of the discrete random variable [tex]\( X \)[/tex].
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Find the answers you need at IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.