Get personalized and accurate responses to your questions with IDNLearn.com. Find accurate and detailed answers to your questions from our experienced and dedicated community members.
Sagot :
Let's solve the problem step by step.
### Part (a): Finding the expectation [tex]\( E(X) \)[/tex] of [tex]\( X \)[/tex].
The expectation (or mean) [tex]\( E(X) \)[/tex] of a discrete random variable [tex]\( X \)[/tex] with values [tex]\( x_i \)[/tex] and corresponding probabilities [tex]\( P(X = x_i) \)[/tex] is given by the formula:
[tex]\[ E(X) = \sum_{i} x_i \cdot P(X = x_i) \][/tex]
Given values and their probabilities:
[tex]\[ \begin{array}{|c|c|} \hline \text{Value } x \text{ of } X & P(X = x) \\ \hline -1 & 0.05 \\ \hline 0 & 0.10 \\ \hline 1 & 0.10 \\ \hline 2 & 0.30 \\ \hline 3 & 0.05 \\ \hline 4 & 0.40 \\ \hline \end{array} \][/tex]
Plugging in these values, we get:
[tex]\[ E(X) = (-1 \cdot 0.05) + (0 \cdot 0.10) + (1 \cdot 0.10) + (2 \cdot 0.30) + (3 \cdot 0.05) + (4 \cdot 0.40) \][/tex]
[tex]\[ E(X) = -0.05 + 0 + 0.10 + 0.60 + 0.15 + 1.60 \][/tex]
[tex]\[ E(X) = 2.4 \][/tex]
Thus, the expectation [tex]\( E(X) \)[/tex] is:
[tex]\[ E(X) = 2.4 \][/tex]
### Part (b): Finding the variance [tex]\( \operatorname{Var}(X) \)[/tex] of [tex]\( X \)[/tex].
The variance [tex]\( \operatorname{Var}(X) \)[/tex] of a discrete random variable [tex]\( X \)[/tex] is given by:
[tex]\[ \operatorname{Var}(X) = E(X^2) - [E(X)]^2 \][/tex]
First, we need to find [tex]\( E(X^2) \)[/tex], which is the expectation of [tex]\( X^2 \)[/tex]:
[tex]\[ E(X^2) = \sum_{i} (x_i^2) \cdot P(X = x_i) \][/tex]
Again, using the given values and probabilities:
[tex]\[ \begin{array}{|c|c|} \hline \text{Value } x & P(X = x) \\ \hline -1 & 0.05 \\ \hline 0 & 0.10 \\ \hline 1 & 0.10 \\ \hline 2 & 0.30 \\ \hline 3 & 0.05 \\ \hline 4 & 0.40 \\ \hline \end{array} \][/tex]
We calculate [tex]\( E(X^2) \)[/tex] as follows:
[tex]\[ E(X^2) = (-1^2 \cdot 0.05) + (0^2 \cdot 0.10) + (1^2 \cdot 0.10) + (2^2 \cdot 0.30) + (3^2 \cdot 0.05) + (4^2 \cdot 0.40) \][/tex]
[tex]\[ E(X^2) = (1 \cdot 0.05) + (0 \cdot 0.10) + (1 \cdot 0.10) + (4 \cdot 0.30) + (9 \cdot 0.05) + (16 \cdot 0.40) \][/tex]
[tex]\[ E(X^2) = 0.05 + 0 + 0.10 + 1.20 + 0.45 + 6.40 \][/tex]
[tex]\[ E(X^2) = 8.2 \][/tex]
Now, we use [tex]\( E(X^2) \)[/tex] and [tex]\( E(X) \)[/tex] to find the variance:
[tex]\[ \operatorname{Var}(X) = E(X^2) - [E(X)]^2 \][/tex]
[tex]\[ \operatorname{Var}(X) = 8.2 - (2.4)^2 \][/tex]
[tex]\[ \operatorname{Var}(X) = 8.2 - 5.76 \][/tex]
[tex]\[ \operatorname{Var}(X) = 2.44 \][/tex]
Finally, we need to raise the variance to the power of 3:
[tex]\[ \operatorname{Var}(X)^3 = (2.44)^3 \][/tex]
[tex]\[ \operatorname{Var}(X)^3 = 14.61184 \][/tex]
Therefore, the variance [tex]\( \operatorname{Var}(X)^3 \)[/tex] is:
[tex]\[ \operatorname{Var}(X)^3 = 14.61184 \][/tex]
### Part (a): Finding the expectation [tex]\( E(X) \)[/tex] of [tex]\( X \)[/tex].
The expectation (or mean) [tex]\( E(X) \)[/tex] of a discrete random variable [tex]\( X \)[/tex] with values [tex]\( x_i \)[/tex] and corresponding probabilities [tex]\( P(X = x_i) \)[/tex] is given by the formula:
[tex]\[ E(X) = \sum_{i} x_i \cdot P(X = x_i) \][/tex]
Given values and their probabilities:
[tex]\[ \begin{array}{|c|c|} \hline \text{Value } x \text{ of } X & P(X = x) \\ \hline -1 & 0.05 \\ \hline 0 & 0.10 \\ \hline 1 & 0.10 \\ \hline 2 & 0.30 \\ \hline 3 & 0.05 \\ \hline 4 & 0.40 \\ \hline \end{array} \][/tex]
Plugging in these values, we get:
[tex]\[ E(X) = (-1 \cdot 0.05) + (0 \cdot 0.10) + (1 \cdot 0.10) + (2 \cdot 0.30) + (3 \cdot 0.05) + (4 \cdot 0.40) \][/tex]
[tex]\[ E(X) = -0.05 + 0 + 0.10 + 0.60 + 0.15 + 1.60 \][/tex]
[tex]\[ E(X) = 2.4 \][/tex]
Thus, the expectation [tex]\( E(X) \)[/tex] is:
[tex]\[ E(X) = 2.4 \][/tex]
### Part (b): Finding the variance [tex]\( \operatorname{Var}(X) \)[/tex] of [tex]\( X \)[/tex].
The variance [tex]\( \operatorname{Var}(X) \)[/tex] of a discrete random variable [tex]\( X \)[/tex] is given by:
[tex]\[ \operatorname{Var}(X) = E(X^2) - [E(X)]^2 \][/tex]
First, we need to find [tex]\( E(X^2) \)[/tex], which is the expectation of [tex]\( X^2 \)[/tex]:
[tex]\[ E(X^2) = \sum_{i} (x_i^2) \cdot P(X = x_i) \][/tex]
Again, using the given values and probabilities:
[tex]\[ \begin{array}{|c|c|} \hline \text{Value } x & P(X = x) \\ \hline -1 & 0.05 \\ \hline 0 & 0.10 \\ \hline 1 & 0.10 \\ \hline 2 & 0.30 \\ \hline 3 & 0.05 \\ \hline 4 & 0.40 \\ \hline \end{array} \][/tex]
We calculate [tex]\( E(X^2) \)[/tex] as follows:
[tex]\[ E(X^2) = (-1^2 \cdot 0.05) + (0^2 \cdot 0.10) + (1^2 \cdot 0.10) + (2^2 \cdot 0.30) + (3^2 \cdot 0.05) + (4^2 \cdot 0.40) \][/tex]
[tex]\[ E(X^2) = (1 \cdot 0.05) + (0 \cdot 0.10) + (1 \cdot 0.10) + (4 \cdot 0.30) + (9 \cdot 0.05) + (16 \cdot 0.40) \][/tex]
[tex]\[ E(X^2) = 0.05 + 0 + 0.10 + 1.20 + 0.45 + 6.40 \][/tex]
[tex]\[ E(X^2) = 8.2 \][/tex]
Now, we use [tex]\( E(X^2) \)[/tex] and [tex]\( E(X) \)[/tex] to find the variance:
[tex]\[ \operatorname{Var}(X) = E(X^2) - [E(X)]^2 \][/tex]
[tex]\[ \operatorname{Var}(X) = 8.2 - (2.4)^2 \][/tex]
[tex]\[ \operatorname{Var}(X) = 8.2 - 5.76 \][/tex]
[tex]\[ \operatorname{Var}(X) = 2.44 \][/tex]
Finally, we need to raise the variance to the power of 3:
[tex]\[ \operatorname{Var}(X)^3 = (2.44)^3 \][/tex]
[tex]\[ \operatorname{Var}(X)^3 = 14.61184 \][/tex]
Therefore, the variance [tex]\( \operatorname{Var}(X)^3 \)[/tex] is:
[tex]\[ \operatorname{Var}(X)^3 = 14.61184 \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! IDNLearn.com has the solutions to your questions. Thanks for stopping by, and see you next time for more reliable information.