Find expert answers and community support for all your questions on IDNLearn.com. Our community provides accurate and timely answers to help you understand and solve any issue.
Sagot :
Let's solve the problem step by step.
### Part (a): Finding the expectation [tex]\( E(X) \)[/tex] of [tex]\( X \)[/tex].
The expectation (or mean) [tex]\( E(X) \)[/tex] of a discrete random variable [tex]\( X \)[/tex] with values [tex]\( x_i \)[/tex] and corresponding probabilities [tex]\( P(X = x_i) \)[/tex] is given by the formula:
[tex]\[ E(X) = \sum_{i} x_i \cdot P(X = x_i) \][/tex]
Given values and their probabilities:
[tex]\[ \begin{array}{|c|c|} \hline \text{Value } x \text{ of } X & P(X = x) \\ \hline -1 & 0.05 \\ \hline 0 & 0.10 \\ \hline 1 & 0.10 \\ \hline 2 & 0.30 \\ \hline 3 & 0.05 \\ \hline 4 & 0.40 \\ \hline \end{array} \][/tex]
Plugging in these values, we get:
[tex]\[ E(X) = (-1 \cdot 0.05) + (0 \cdot 0.10) + (1 \cdot 0.10) + (2 \cdot 0.30) + (3 \cdot 0.05) + (4 \cdot 0.40) \][/tex]
[tex]\[ E(X) = -0.05 + 0 + 0.10 + 0.60 + 0.15 + 1.60 \][/tex]
[tex]\[ E(X) = 2.4 \][/tex]
Thus, the expectation [tex]\( E(X) \)[/tex] is:
[tex]\[ E(X) = 2.4 \][/tex]
### Part (b): Finding the variance [tex]\( \operatorname{Var}(X) \)[/tex] of [tex]\( X \)[/tex].
The variance [tex]\( \operatorname{Var}(X) \)[/tex] of a discrete random variable [tex]\( X \)[/tex] is given by:
[tex]\[ \operatorname{Var}(X) = E(X^2) - [E(X)]^2 \][/tex]
First, we need to find [tex]\( E(X^2) \)[/tex], which is the expectation of [tex]\( X^2 \)[/tex]:
[tex]\[ E(X^2) = \sum_{i} (x_i^2) \cdot P(X = x_i) \][/tex]
Again, using the given values and probabilities:
[tex]\[ \begin{array}{|c|c|} \hline \text{Value } x & P(X = x) \\ \hline -1 & 0.05 \\ \hline 0 & 0.10 \\ \hline 1 & 0.10 \\ \hline 2 & 0.30 \\ \hline 3 & 0.05 \\ \hline 4 & 0.40 \\ \hline \end{array} \][/tex]
We calculate [tex]\( E(X^2) \)[/tex] as follows:
[tex]\[ E(X^2) = (-1^2 \cdot 0.05) + (0^2 \cdot 0.10) + (1^2 \cdot 0.10) + (2^2 \cdot 0.30) + (3^2 \cdot 0.05) + (4^2 \cdot 0.40) \][/tex]
[tex]\[ E(X^2) = (1 \cdot 0.05) + (0 \cdot 0.10) + (1 \cdot 0.10) + (4 \cdot 0.30) + (9 \cdot 0.05) + (16 \cdot 0.40) \][/tex]
[tex]\[ E(X^2) = 0.05 + 0 + 0.10 + 1.20 + 0.45 + 6.40 \][/tex]
[tex]\[ E(X^2) = 8.2 \][/tex]
Now, we use [tex]\( E(X^2) \)[/tex] and [tex]\( E(X) \)[/tex] to find the variance:
[tex]\[ \operatorname{Var}(X) = E(X^2) - [E(X)]^2 \][/tex]
[tex]\[ \operatorname{Var}(X) = 8.2 - (2.4)^2 \][/tex]
[tex]\[ \operatorname{Var}(X) = 8.2 - 5.76 \][/tex]
[tex]\[ \operatorname{Var}(X) = 2.44 \][/tex]
Finally, we need to raise the variance to the power of 3:
[tex]\[ \operatorname{Var}(X)^3 = (2.44)^3 \][/tex]
[tex]\[ \operatorname{Var}(X)^3 = 14.61184 \][/tex]
Therefore, the variance [tex]\( \operatorname{Var}(X)^3 \)[/tex] is:
[tex]\[ \operatorname{Var}(X)^3 = 14.61184 \][/tex]
### Part (a): Finding the expectation [tex]\( E(X) \)[/tex] of [tex]\( X \)[/tex].
The expectation (or mean) [tex]\( E(X) \)[/tex] of a discrete random variable [tex]\( X \)[/tex] with values [tex]\( x_i \)[/tex] and corresponding probabilities [tex]\( P(X = x_i) \)[/tex] is given by the formula:
[tex]\[ E(X) = \sum_{i} x_i \cdot P(X = x_i) \][/tex]
Given values and their probabilities:
[tex]\[ \begin{array}{|c|c|} \hline \text{Value } x \text{ of } X & P(X = x) \\ \hline -1 & 0.05 \\ \hline 0 & 0.10 \\ \hline 1 & 0.10 \\ \hline 2 & 0.30 \\ \hline 3 & 0.05 \\ \hline 4 & 0.40 \\ \hline \end{array} \][/tex]
Plugging in these values, we get:
[tex]\[ E(X) = (-1 \cdot 0.05) + (0 \cdot 0.10) + (1 \cdot 0.10) + (2 \cdot 0.30) + (3 \cdot 0.05) + (4 \cdot 0.40) \][/tex]
[tex]\[ E(X) = -0.05 + 0 + 0.10 + 0.60 + 0.15 + 1.60 \][/tex]
[tex]\[ E(X) = 2.4 \][/tex]
Thus, the expectation [tex]\( E(X) \)[/tex] is:
[tex]\[ E(X) = 2.4 \][/tex]
### Part (b): Finding the variance [tex]\( \operatorname{Var}(X) \)[/tex] of [tex]\( X \)[/tex].
The variance [tex]\( \operatorname{Var}(X) \)[/tex] of a discrete random variable [tex]\( X \)[/tex] is given by:
[tex]\[ \operatorname{Var}(X) = E(X^2) - [E(X)]^2 \][/tex]
First, we need to find [tex]\( E(X^2) \)[/tex], which is the expectation of [tex]\( X^2 \)[/tex]:
[tex]\[ E(X^2) = \sum_{i} (x_i^2) \cdot P(X = x_i) \][/tex]
Again, using the given values and probabilities:
[tex]\[ \begin{array}{|c|c|} \hline \text{Value } x & P(X = x) \\ \hline -1 & 0.05 \\ \hline 0 & 0.10 \\ \hline 1 & 0.10 \\ \hline 2 & 0.30 \\ \hline 3 & 0.05 \\ \hline 4 & 0.40 \\ \hline \end{array} \][/tex]
We calculate [tex]\( E(X^2) \)[/tex] as follows:
[tex]\[ E(X^2) = (-1^2 \cdot 0.05) + (0^2 \cdot 0.10) + (1^2 \cdot 0.10) + (2^2 \cdot 0.30) + (3^2 \cdot 0.05) + (4^2 \cdot 0.40) \][/tex]
[tex]\[ E(X^2) = (1 \cdot 0.05) + (0 \cdot 0.10) + (1 \cdot 0.10) + (4 \cdot 0.30) + (9 \cdot 0.05) + (16 \cdot 0.40) \][/tex]
[tex]\[ E(X^2) = 0.05 + 0 + 0.10 + 1.20 + 0.45 + 6.40 \][/tex]
[tex]\[ E(X^2) = 8.2 \][/tex]
Now, we use [tex]\( E(X^2) \)[/tex] and [tex]\( E(X) \)[/tex] to find the variance:
[tex]\[ \operatorname{Var}(X) = E(X^2) - [E(X)]^2 \][/tex]
[tex]\[ \operatorname{Var}(X) = 8.2 - (2.4)^2 \][/tex]
[tex]\[ \operatorname{Var}(X) = 8.2 - 5.76 \][/tex]
[tex]\[ \operatorname{Var}(X) = 2.44 \][/tex]
Finally, we need to raise the variance to the power of 3:
[tex]\[ \operatorname{Var}(X)^3 = (2.44)^3 \][/tex]
[tex]\[ \operatorname{Var}(X)^3 = 14.61184 \][/tex]
Therefore, the variance [tex]\( \operatorname{Var}(X)^3 \)[/tex] is:
[tex]\[ \operatorname{Var}(X)^3 = 14.61184 \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. IDNLearn.com has the answers you need. Thank you for visiting, and we look forward to helping you again soon.