Get comprehensive answers to your questions with the help of IDNLearn.com's community. Get prompt and accurate answers to your questions from our community of experts who are always ready to help.
Sagot :
Sure! Let's analyze the exponential function [tex]\( f(x) = -3(3^x) \)[/tex] step-by-step:
### 1. Identify [tex]\( a \)[/tex] and [tex]\( b \)[/tex]
The general form of an exponential function is [tex]\( f(x) = a(b^x) \)[/tex]. Here, we can directly see:
- [tex]\( a = -3 \)[/tex]
- [tex]\( b = 3 \)[/tex]
### 2. Determine the [tex]\( y \)[/tex]-intercept
The [tex]\( y \)[/tex]-intercept occurs where [tex]\( x = 0 \)[/tex]. To find this, substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ f(0) = -3 \cdot (3^0) = -3 \cdot 1 = -3 \][/tex]
Thus, the [tex]\( y \)[/tex]-intercept is [tex]\(-3\)[/tex].
### 3. Calculate [tex]\( f(x) \)[/tex] for specified [tex]\( x \)[/tex] values
We need to find the values of [tex]\( f(x) \)[/tex] for [tex]\( x = -2, -1, 0, 1, 2 \)[/tex]:
- For [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = -3 \cdot (3^{-2}) = -3 \cdot \frac{1}{3^2} = -3 \cdot \frac{1}{9} = -\frac{3}{9} = -0.3333 \][/tex]
- For [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = -3 \cdot (3^{-1}) = -3 \cdot \frac{1}{3} = -3 \cdot 0.3333 = -1 \][/tex]
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = -3 \cdot (3^0) = -3 \cdot 1 = -3 \][/tex]
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = -3 \cdot (3^1) = -3 \cdot 3 = -9 \][/tex]
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = -3 \cdot (3^2) = -3 \cdot 9 = -27 \][/tex]
### 4. Determine the end behavior
Evaluate the behavior of [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] approaches positive and negative infinity:
- As [tex]\( x \to +\infty \)[/tex]: Since [tex]\( b = 3 > 1 \)[/tex] and the coefficient [tex]\( a = -3 \)[/tex] is negative, the function grows exponentially more negative. Graphically, this means the values of [tex]\( f(x) \)[/tex] become very large negative numbers.
So, as [tex]\( x \to +\infty \)[/tex], [tex]\( y \to -\infty \)[/tex].
- As [tex]\( x \to -\infty \)[/tex]: For very large negative values of [tex]\( x \)[/tex], the term [tex]\( 3^x \)[/tex] approaches 0 because any number raised to a negative power gets closer to zero. However, multiplied by [tex]\(-3\)[/tex], it becomes a very small negative number but still close to zero.
So, as [tex]\( x \to -\infty \)[/tex], [tex]\( y \to 0 \)[/tex].
### Summary
Here is the result:
[tex]\[ \begin{array}{|l|l|l|l|l|l|} \hline x & -2 & -1 & 0 & 1 & 2 \\ \hline f(x) & -0.3333 & -1 & -3 & -9 & -27 \\ \hline \end{array} \][/tex]
- [tex]\( a = -3 \)[/tex]
- [tex]\( b = 3 \)[/tex]
- [tex]\( y \)[/tex]-intercept = [tex]\(-3\)[/tex]
- End Behavior:
- As [tex]\( x \to +\infty \)[/tex], [tex]\( y \to -\infty \)[/tex]
- As [tex]\( x \to -\infty \)[/tex], [tex]\( y \to 0 \)[/tex]
### 1. Identify [tex]\( a \)[/tex] and [tex]\( b \)[/tex]
The general form of an exponential function is [tex]\( f(x) = a(b^x) \)[/tex]. Here, we can directly see:
- [tex]\( a = -3 \)[/tex]
- [tex]\( b = 3 \)[/tex]
### 2. Determine the [tex]\( y \)[/tex]-intercept
The [tex]\( y \)[/tex]-intercept occurs where [tex]\( x = 0 \)[/tex]. To find this, substitute [tex]\( x = 0 \)[/tex] into the function:
[tex]\[ f(0) = -3 \cdot (3^0) = -3 \cdot 1 = -3 \][/tex]
Thus, the [tex]\( y \)[/tex]-intercept is [tex]\(-3\)[/tex].
### 3. Calculate [tex]\( f(x) \)[/tex] for specified [tex]\( x \)[/tex] values
We need to find the values of [tex]\( f(x) \)[/tex] for [tex]\( x = -2, -1, 0, 1, 2 \)[/tex]:
- For [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = -3 \cdot (3^{-2}) = -3 \cdot \frac{1}{3^2} = -3 \cdot \frac{1}{9} = -\frac{3}{9} = -0.3333 \][/tex]
- For [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = -3 \cdot (3^{-1}) = -3 \cdot \frac{1}{3} = -3 \cdot 0.3333 = -1 \][/tex]
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = -3 \cdot (3^0) = -3 \cdot 1 = -3 \][/tex]
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = -3 \cdot (3^1) = -3 \cdot 3 = -9 \][/tex]
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = -3 \cdot (3^2) = -3 \cdot 9 = -27 \][/tex]
### 4. Determine the end behavior
Evaluate the behavior of [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] approaches positive and negative infinity:
- As [tex]\( x \to +\infty \)[/tex]: Since [tex]\( b = 3 > 1 \)[/tex] and the coefficient [tex]\( a = -3 \)[/tex] is negative, the function grows exponentially more negative. Graphically, this means the values of [tex]\( f(x) \)[/tex] become very large negative numbers.
So, as [tex]\( x \to +\infty \)[/tex], [tex]\( y \to -\infty \)[/tex].
- As [tex]\( x \to -\infty \)[/tex]: For very large negative values of [tex]\( x \)[/tex], the term [tex]\( 3^x \)[/tex] approaches 0 because any number raised to a negative power gets closer to zero. However, multiplied by [tex]\(-3\)[/tex], it becomes a very small negative number but still close to zero.
So, as [tex]\( x \to -\infty \)[/tex], [tex]\( y \to 0 \)[/tex].
### Summary
Here is the result:
[tex]\[ \begin{array}{|l|l|l|l|l|l|} \hline x & -2 & -1 & 0 & 1 & 2 \\ \hline f(x) & -0.3333 & -1 & -3 & -9 & -27 \\ \hline \end{array} \][/tex]
- [tex]\( a = -3 \)[/tex]
- [tex]\( b = 3 \)[/tex]
- [tex]\( y \)[/tex]-intercept = [tex]\(-3\)[/tex]
- End Behavior:
- As [tex]\( x \to +\infty \)[/tex], [tex]\( y \to -\infty \)[/tex]
- As [tex]\( x \to -\infty \)[/tex], [tex]\( y \to 0 \)[/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find clear and concise answers at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.