Find the best answers to your questions with the help of IDNLearn.com's expert contributors. Join our community to receive timely and reliable responses to your questions from knowledgeable professionals.

Graph each exponential function. Identify [tex]\(a\)[/tex], [tex]\(b\)[/tex], the [tex]\(y\)[/tex]-intercept, and the end behavior of the graph.

1. [tex]\(f(x)=-3(3)^x\)[/tex]

\begin{tabular}{|l|l|l|l|l|l|}
\hline
[tex]$x$[/tex] & -2 & -1 & 0 & 1 & 2 \\
\hline
[tex]$f(x)$[/tex] & & & & & \\
\hline
\end{tabular}

[tex]\(a=\)[/tex] [tex]\(\qquad\)[/tex] [tex]\(b=\)[/tex] [tex]\(\qquad\)[/tex] [tex]\(y\)[/tex]-intercept [tex]\(=\)[/tex] [tex]\(\qquad\)[/tex]

End Behavior:
- As [tex]\(x \rightarrow +\infty, y \rightarrow\)[/tex] [tex]\(\qquad\)[/tex]
- As [tex]\(x \rightarrow -\infty, y \rightarrow\)[/tex] [tex]\(\qquad\)[/tex]


Sagot :

Sure! Let's analyze the exponential function [tex]\( f(x) = -3(3^x) \)[/tex] step-by-step:

### 1. Identify [tex]\( a \)[/tex] and [tex]\( b \)[/tex]

The general form of an exponential function is [tex]\( f(x) = a(b^x) \)[/tex]. Here, we can directly see:

- [tex]\( a = -3 \)[/tex]
- [tex]\( b = 3 \)[/tex]

### 2. Determine the [tex]\( y \)[/tex]-intercept

The [tex]\( y \)[/tex]-intercept occurs where [tex]\( x = 0 \)[/tex]. To find this, substitute [tex]\( x = 0 \)[/tex] into the function:

[tex]\[ f(0) = -3 \cdot (3^0) = -3 \cdot 1 = -3 \][/tex]

Thus, the [tex]\( y \)[/tex]-intercept is [tex]\(-3\)[/tex].

### 3. Calculate [tex]\( f(x) \)[/tex] for specified [tex]\( x \)[/tex] values

We need to find the values of [tex]\( f(x) \)[/tex] for [tex]\( x = -2, -1, 0, 1, 2 \)[/tex]:

- For [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = -3 \cdot (3^{-2}) = -3 \cdot \frac{1}{3^2} = -3 \cdot \frac{1}{9} = -\frac{3}{9} = -0.3333 \][/tex]

- For [tex]\( x = -1 \)[/tex]:
[tex]\[ f(-1) = -3 \cdot (3^{-1}) = -3 \cdot \frac{1}{3} = -3 \cdot 0.3333 = -1 \][/tex]

- For [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = -3 \cdot (3^0) = -3 \cdot 1 = -3 \][/tex]

- For [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = -3 \cdot (3^1) = -3 \cdot 3 = -9 \][/tex]

- For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = -3 \cdot (3^2) = -3 \cdot 9 = -27 \][/tex]

### 4. Determine the end behavior

Evaluate the behavior of [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] approaches positive and negative infinity:

- As [tex]\( x \to +\infty \)[/tex]: Since [tex]\( b = 3 > 1 \)[/tex] and the coefficient [tex]\( a = -3 \)[/tex] is negative, the function grows exponentially more negative. Graphically, this means the values of [tex]\( f(x) \)[/tex] become very large negative numbers.

So, as [tex]\( x \to +\infty \)[/tex], [tex]\( y \to -\infty \)[/tex].

- As [tex]\( x \to -\infty \)[/tex]: For very large negative values of [tex]\( x \)[/tex], the term [tex]\( 3^x \)[/tex] approaches 0 because any number raised to a negative power gets closer to zero. However, multiplied by [tex]\(-3\)[/tex], it becomes a very small negative number but still close to zero.

So, as [tex]\( x \to -\infty \)[/tex], [tex]\( y \to 0 \)[/tex].

### Summary

Here is the result:

[tex]\[ \begin{array}{|l|l|l|l|l|l|} \hline x & -2 & -1 & 0 & 1 & 2 \\ \hline f(x) & -0.3333 & -1 & -3 & -9 & -27 \\ \hline \end{array} \][/tex]

- [tex]\( a = -3 \)[/tex]
- [tex]\( b = 3 \)[/tex]
- [tex]\( y \)[/tex]-intercept = [tex]\(-3\)[/tex]
- End Behavior:
- As [tex]\( x \to +\infty \)[/tex], [tex]\( y \to -\infty \)[/tex]
- As [tex]\( x \to -\infty \)[/tex], [tex]\( y \to 0 \)[/tex]