Ask questions, share knowledge, and connect with a vibrant community on IDNLearn.com. Get step-by-step guidance for all your technical questions from our knowledgeable community members.
Sagot :
To solve for the vector [tex]\( x \)[/tex] such that [tex]\( T(x) = A x = b \)[/tex], where
[tex]\[ A = \begin{pmatrix} 1 & -5 & -6 \\ -3 & 6 & 0 \end{pmatrix} \][/tex]
and
[tex]\[ b = \begin{pmatrix} -3 \\ 0 \end{pmatrix}, \][/tex]
we need to determine [tex]\( x \)[/tex] such that the equation [tex]\( A x = b \)[/tex] holds true.
### Step 1: Formulate the Equation
We are looking for [tex]\( x \)[/tex] in the form:
[tex]\[ x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \][/tex]
such that:
[tex]\[ \begin{pmatrix} 1 & -5 & -6 \\ -3 & 6 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -3 \\ 0 \end{pmatrix}. \][/tex]
### Step 2: Set Up the System of Linear Equations
This matrix equation translates to the following system of linear equations:
[tex]\[ \begin{cases} 1 \cdot x_1 - 5 \cdot x_2 - 6 \cdot x_3 = -3 \\ -3 \cdot x_1 + 6 \cdot x_2 = 0 \end{cases} \][/tex]
### Step 3: Solve the Second Equation
From the second equation:
[tex]\[ -3x_1 + 6x_2 = 0 \][/tex]
we can solve for one of the variables in terms of the other:
[tex]\[ -3x_1 = -6x_2 \][/tex]
[tex]\[ x_1 = 2x_2 \][/tex]
### Step 4: Substitute [tex]\( x_1 = 2 x_2 \)[/tex] into the First Equation
Next, substitute [tex]\( x_1 = 2 x_2 \)[/tex] into the first equation:
[tex]\[ 1 \cdot (2 x_2) - 5 \cdot x_2 - 6 \cdot x_3 = -3 \][/tex]
[tex]\[ 2 x_2 - 5 x_2 - 6 x_3 = -3 \][/tex]
[tex]\[ -3 x_2 - 6 x_3 = -3 \][/tex]
### Step 5: Solve for [tex]\( x_2 \)[/tex]
Divide the equation by -3:
[tex]\[ x_2 + 2 x_3 = 1 \][/tex]
[tex]\[ x_2 = 1 - 2 x_3 \][/tex]
### Step 6: Express [tex]\( x_1, x_2, x_3 \)[/tex]
We've determined:
[tex]\[ x_1 = 2 x_2 = 2 (1 - 2 x_3) = 2 - 4 x_3, \][/tex]
therefore:
[tex]\[ x_1 = 2 - 4 x_3 \][/tex]
[tex]\[ x_2 = 1 - 2 x_3 \][/tex]
[tex]\[ x_3 = x_3 \][/tex]
The solution vector [tex]\( x \)[/tex] can be expressed as:
[tex]\[ x = \begin{pmatrix} 2 - 4 x_3 \\ 1 - 2 x_3 \\ x_3 \end{pmatrix}. \][/tex]
### Step 7: Determine Specific Solution
We use the specific instance when [tex]\( x_3 = 0 \)[/tex] to find a particular solution:
[tex]\[ x_3 = 0 \][/tex]
[tex]\[ x_1 = 2 \][/tex]
[tex]\[ x_2 = 1 \][/tex]
So, one particular solution is:
[tex]\[ x = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}. \][/tex]
### Step 8: General Solution and Uniqueness
The general solution is:
[tex]\[ x = \begin{pmatrix} 2 - 4 x_3 \\ 1 - 2 x_3 \\ x_3 \end{pmatrix}. \][/tex]
This implies that there are infinitely many solutions due to the free variable [tex]\( x_3 \)[/tex]. Therefore, the solution is not unique.
### Conclusion
The vector [tex]\( x \)[/tex] whose image under [tex]\( T \)[/tex] is [tex]\( b \)[/tex] is given by:
[tex]\[ x = \begin{pmatrix} 2 - 4 x_3 \\ 1 - 2 x_3 \\ x_3 \end{pmatrix}, \][/tex]
where [tex]\( x_3 \)[/tex] is any real number. Consequently, the solution is not unique. In the given example, a solution can also be represented by [tex]\( x = \begin{pmatrix} 0.09523809523809512 \\ 0.047619047619047616 \\ 0.47619047619047583 \end{pmatrix} \)[/tex].
[tex]\[ A = \begin{pmatrix} 1 & -5 & -6 \\ -3 & 6 & 0 \end{pmatrix} \][/tex]
and
[tex]\[ b = \begin{pmatrix} -3 \\ 0 \end{pmatrix}, \][/tex]
we need to determine [tex]\( x \)[/tex] such that the equation [tex]\( A x = b \)[/tex] holds true.
### Step 1: Formulate the Equation
We are looking for [tex]\( x \)[/tex] in the form:
[tex]\[ x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \][/tex]
such that:
[tex]\[ \begin{pmatrix} 1 & -5 & -6 \\ -3 & 6 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -3 \\ 0 \end{pmatrix}. \][/tex]
### Step 2: Set Up the System of Linear Equations
This matrix equation translates to the following system of linear equations:
[tex]\[ \begin{cases} 1 \cdot x_1 - 5 \cdot x_2 - 6 \cdot x_3 = -3 \\ -3 \cdot x_1 + 6 \cdot x_2 = 0 \end{cases} \][/tex]
### Step 3: Solve the Second Equation
From the second equation:
[tex]\[ -3x_1 + 6x_2 = 0 \][/tex]
we can solve for one of the variables in terms of the other:
[tex]\[ -3x_1 = -6x_2 \][/tex]
[tex]\[ x_1 = 2x_2 \][/tex]
### Step 4: Substitute [tex]\( x_1 = 2 x_2 \)[/tex] into the First Equation
Next, substitute [tex]\( x_1 = 2 x_2 \)[/tex] into the first equation:
[tex]\[ 1 \cdot (2 x_2) - 5 \cdot x_2 - 6 \cdot x_3 = -3 \][/tex]
[tex]\[ 2 x_2 - 5 x_2 - 6 x_3 = -3 \][/tex]
[tex]\[ -3 x_2 - 6 x_3 = -3 \][/tex]
### Step 5: Solve for [tex]\( x_2 \)[/tex]
Divide the equation by -3:
[tex]\[ x_2 + 2 x_3 = 1 \][/tex]
[tex]\[ x_2 = 1 - 2 x_3 \][/tex]
### Step 6: Express [tex]\( x_1, x_2, x_3 \)[/tex]
We've determined:
[tex]\[ x_1 = 2 x_2 = 2 (1 - 2 x_3) = 2 - 4 x_3, \][/tex]
therefore:
[tex]\[ x_1 = 2 - 4 x_3 \][/tex]
[tex]\[ x_2 = 1 - 2 x_3 \][/tex]
[tex]\[ x_3 = x_3 \][/tex]
The solution vector [tex]\( x \)[/tex] can be expressed as:
[tex]\[ x = \begin{pmatrix} 2 - 4 x_3 \\ 1 - 2 x_3 \\ x_3 \end{pmatrix}. \][/tex]
### Step 7: Determine Specific Solution
We use the specific instance when [tex]\( x_3 = 0 \)[/tex] to find a particular solution:
[tex]\[ x_3 = 0 \][/tex]
[tex]\[ x_1 = 2 \][/tex]
[tex]\[ x_2 = 1 \][/tex]
So, one particular solution is:
[tex]\[ x = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}. \][/tex]
### Step 8: General Solution and Uniqueness
The general solution is:
[tex]\[ x = \begin{pmatrix} 2 - 4 x_3 \\ 1 - 2 x_3 \\ x_3 \end{pmatrix}. \][/tex]
This implies that there are infinitely many solutions due to the free variable [tex]\( x_3 \)[/tex]. Therefore, the solution is not unique.
### Conclusion
The vector [tex]\( x \)[/tex] whose image under [tex]\( T \)[/tex] is [tex]\( b \)[/tex] is given by:
[tex]\[ x = \begin{pmatrix} 2 - 4 x_3 \\ 1 - 2 x_3 \\ x_3 \end{pmatrix}, \][/tex]
where [tex]\( x_3 \)[/tex] is any real number. Consequently, the solution is not unique. In the given example, a solution can also be represented by [tex]\( x = \begin{pmatrix} 0.09523809523809512 \\ 0.047619047619047616 \\ 0.47619047619047583 \end{pmatrix} \)[/tex].
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for choosing IDNLearn.com. We’re here to provide reliable answers, so please visit us again for more solutions.