IDNLearn.com is your go-to resource for finding expert answers and community support. Our community provides timely and precise responses to help you understand and solve any issue you face.

Determine the vapor pressure in mmHg of a substance at [tex]$45^{\circ}C$[/tex] if its normal boiling point is [tex]$115^{\circ}C$[/tex] and its enthalpy of vaporization is [tex]$57.9 \, kJ/mol$[/tex].

[tex]\[
\begin{array}{l}
\left( P_1 = 1 \, \text{atm} \right) \\
\ln \frac{P_2}{P_1} = \frac{-\Delta H}{R} \left[ \frac{1}{T_1} - \frac{1}{T_2} \right]
\end{array}
\][/tex]


Sagot :

To determine the vapor pressure in mmHg of a substance at [tex]\( 45^\circ C \)[/tex], given that its normal boiling point is [tex]\( 115^\circ C \)[/tex] and its enthalpy of vaporization is [tex]\( 57.9 \, \text{kJ/mol} \)[/tex], we will use the Clausius-Clapeyron equation. Here’s the step-by-step solution:

1. Convert all temperatures to Kelvin:
- The normal boiling point temperature [tex]\( T_1 \)[/tex] is [tex]\( 115^\circ C \)[/tex]. Convert it to Kelvin using the formula [tex]\( T(K) = T(°C) + 273.15 \)[/tex]:
[tex]\[ T_1 = 115 + 273.15 = 388.15 \, \text{K} \][/tex]

- The temperature [tex]\( T_2 \)[/tex] at which we want to find the vapor pressure is [tex]\( 45^\circ C \)[/tex]. Convert it to Kelvin:
[tex]\[ T_2 = 45 + 273.15 = 318.15 \, \text{K} \][/tex]

2. Convert the enthalpy of vaporization to Joules per mole:
[tex]\[ \Delta H = 57.9 \, \text{kJ/mol} = 57.9 \times 1000 \, \text{J/mol} = 57900 \, \text{J/mol} \][/tex]

3. Use the Clausius-Clapeyron equation:
The Clausius-Clapeyron equation is:
[tex]\[ \ln \frac{P_2}{P_1} = \frac{-\Delta H}{R} \left[ \frac{1}{T_1} - \frac{1}{T_2} \right] \][/tex]
Where:
- [tex]\( P_1 \)[/tex] is the vapor pressure at the normal boiling point, which is [tex]\( 1 \, \text{atm} \)[/tex].
- [tex]\( R \)[/tex] is the universal gas constant, [tex]\( 8.314 \, \text{J/(mol·K)} \)[/tex].

Substitute the given values into the equation:
[tex]\[ \ln \frac{P_2}{P_1} = \frac{-57900}{8.314} \left[ \frac{1}{388.15} - \frac{1}{318.15} \right] \][/tex]

4. Calculate the natural logarithm term:
[tex]\[ \frac{1}{388.15} \approx 0.002577 \, \text{K}^{-1} \][/tex]
[tex]\[ \frac{1}{318.15} \approx 0.003143 \, \text{K}^{-1} \][/tex]
[tex]\[ \frac{1}{388.15} - \frac{1}{318.15} \approx 0.002577 - 0.003143 = -0.000566 \, \text{K}^{-1} \][/tex]
[tex]\[ \ln \frac{P_2}{P_1} = \frac{-57900}{8.314} \times (-0.000566) \approx 393.10 \times (-0.000566) = 3.9476 \][/tex]

5. Calculate [tex]\( P_2 \)[/tex] by exponentiating both sides:
[tex]\[ \ln \frac{P_2}{1\, \text{atm}} = 3.9476 \][/tex]
[tex]\[ P_2 \approx e^{3.9476} \approx 51.81 \, \text{atm} \][/tex]

6. Convert the vapor pressure from atm to mmHg:
[tex]\[ P_2 \, \text{(in mmHg)} = 51.81 \, \text{atm} \times 760 \, \text{mmHg/atm} \approx 39376.95 \, \text{mmHg} \][/tex]

Therefore, the vapor pressure of the substance at [tex]\( 45^\circ C \)[/tex] is approximately [tex]\( 39376.95 \, \text{mmHg} \)[/tex].