IDNLearn.com provides a collaborative environment for finding and sharing answers. Join our Q&A platform to get accurate and thorough answers to all your pressing questions.

Solve the linear programming problem by graphing and then determining which vertex maximizes the objective function [tex]$P=7x+9y$[/tex].

[tex]\[
\begin{cases}
x + 2y \leq 10 \\
4x + y \leq 12 \\
x \geq 0 \\
y \geq 0
\end{cases}
\][/tex]

[tex]x = \square[/tex]
[tex]y = \square[/tex]

What is the maximum value? [tex]P = \square[/tex]


Sagot :

To solve the given linear programming problem by graphing, we need to follow these steps:

Step 1: Graph the Constraints
---------------------------------
The constraints given in the problem are:

1. [tex]\( x + 2y \leq 10 \)[/tex]
2. [tex]\( 4x + y \leq 12 \)[/tex]
3. [tex]\( x \geq 0 \)[/tex]
4. [tex]\( y \geq 0 \)[/tex]

Let's find the intersections of these lines while ensuring non-negative [tex]\(x\)[/tex] and [tex]\(y\)[/tex].

1) [tex]\(x + 2y \leq 10\)[/tex]
- When [tex]\( x = 0 \)[/tex], [tex]\( 2y \leq 10 \implies y \leq 5 \)[/tex]. So, we have the point [tex]\( (0, 5) \)[/tex].
- When [tex]\( y = 0 \)[/tex], [tex]\( x \leq 10 \)[/tex]. So, we have the point [tex]\( (10, 0) \)[/tex].

2) [tex]\(4x + y \leq 12\)[/tex]
- When [tex]\( x = 0 \)[/tex], [tex]\( y \leq 12 \)[/tex]. So, we have the point [tex]\( (0, 12) \)[/tex].
- When [tex]\( y = 0 \)[/tex], [tex]\( 4x \leq 12 \implies x \leq 3 \)[/tex]. So, we have the point [tex]\( (3, 0) \)[/tex].

Now, let's find the point of intersection of the two lines:
- [tex]\(x + 2y = 10\)[/tex]
- [tex]\(4x + y = 12\)[/tex]

Solve these equations simultaneously:
Multiply the first equation by 4:
[tex]\(4x + 8y = 40\)[/tex]
Now subtract the second equation from this result:
[tex]\((4x + 8y) - (4x + y) = 40 - 12\)[/tex]
[tex]\(7y = 28\)[/tex]
[tex]\( y = 4 \)[/tex]

Substitute [tex]\(y = 4\)[/tex] back into the first equation:
[tex]\(x + 2*4 = 10\)[/tex]
[tex]\(x + 8 = 10\)[/tex]
[tex]\(x = 2\)[/tex]

So, the point of intersection is [tex]\( (2, 4) \)[/tex].

Step 2: Identify the Feasible Region
--------------------------------------
Plotting the lines on a graph and identifying the region that satisfies all constraints is crucial. The feasible region will be bounded by the lines and the axes.

Vertices of the feasible region:
- [tex]\( (0,5) \)[/tex]
- [tex]\( (10, 0) \)[/tex]
- [tex]\( (3, 0) \)[/tex]
- [tex]\( (0, 12) \)[/tex] (but it is beyond the bound defined by [tex]\(4x+y \leq 12\)[/tex])
- [tex]\( (2, 4) \)[/tex] (intersection of [tex]\( x + 2y = 10 \)[/tex] and [tex]\( 4x + y = 12 \)[/tex])

Step 3: Evaluate the Objective Function at Each Vertex
----------------------------------------------------------
Objective function: [tex]\(P = 7x + 9y\)[/tex]

Calculate [tex]\(P\)[/tex] at each vertex:

- At [tex]\( (0, 5) \)[/tex]:
[tex]\( P = 7(0) + 9(5) = 45 \)[/tex]

- At [tex]\( (10, 0) \)[/tex]:
[tex]\( P = 7(10) + 9(0) = 70 \)[/tex]

- At [tex]\( (3, 0) \)[/tex]:
[tex]\( P = 7(3) + 9(0) = 21 \)[/tex]

- At [tex]\( (2, 4) \)[/tex]:
[tex]\( P = 7(2) + 9(4) = 14 + 36 = 50 \)[/tex]

Step 4: Determine the Maximum Value
-------------------------------------
By evaluating the objective function at each vertex, we observe that the maximum value is [tex]\(P = 50\)[/tex] at point [tex]\( (2, 4) \)[/tex].

Thus,
- [tex]\( x = 2 \)[/tex]
- [tex]\( y = 4 \)[/tex]
- Maximum value [tex]\( P = 50 \)[/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com provides the answers you need. Thank you for visiting, and see you next time for more valuable insights.