Join the growing community of curious minds on IDNLearn.com. Discover in-depth and trustworthy answers to all your questions from our experienced community members.
Sagot :
Certainly! Let's solve the problem step-by-step using the Combined Gas Law which relates pressure (P), volume (V), and temperature (T) of a gas sample with the equation:
[tex]\[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \][/tex]
Here are the given values:
- Initial volume [tex]\( V_1 = 54.0 \)[/tex] L
- Initial pressure [tex]\( P_1 = 759 \)[/tex] mmHg
- Initial temperature [tex]\( T_1 = 21.1^{\circ} \text{C} \)[/tex]
First, we need to convert the initial temperature from Celsius to Kelvin:
[tex]\[ T_1 = 21.1 + 273.15 = 294.25 \text{ K} \][/tex]
Next, we are given the conditions at the higher altitude:
- Temperature [tex]\( T_2 = -3.86^{\circ} \text{C} \)[/tex]
- Pressure [tex]\( P_2 = 0.0757 \text{ atm} \)[/tex]
Again, convert the temperature [tex]\( T_2 \)[/tex] to Kelvin:
[tex]\[ T_2 = -3.86 + 273.15 = 269.29 \text{ K} \][/tex]
Also, convert the pressure [tex]\( P_2 \)[/tex] into mmHg (since 1 atm = 760 mmHg):
[tex]\[ P_2 = 0.0757 \times 760 = 57.532 \text{ mmHg} \][/tex]
Now, we are ready to solve for the new volume [tex]\( V_2 \)[/tex] using the Combined Gas Law:
[tex]\[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \][/tex]
Rearranging the formula to solve for [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = \frac{P_1 V_1 T_2}{T_1 P_2} \][/tex]
Substituting the given values into the equation:
[tex]\[ V_2 = \frac{759 \,\text{mmHg} \times 54.0 \,\text{L} \times 269.29 \,\text{K}}{294.25 \,\text{K} \times 57.532 \,\text{mmHg}} \][/tex]
[tex]\[ V_2 = 651.97 \, \text{L} \quad \text{(rounded to two decimal places)} \][/tex]
Therefore, the volume of the weather balloon at the higher altitude is:
[tex]\[ V = 651.97 \, \text{L} \][/tex]
[tex]\[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \][/tex]
Here are the given values:
- Initial volume [tex]\( V_1 = 54.0 \)[/tex] L
- Initial pressure [tex]\( P_1 = 759 \)[/tex] mmHg
- Initial temperature [tex]\( T_1 = 21.1^{\circ} \text{C} \)[/tex]
First, we need to convert the initial temperature from Celsius to Kelvin:
[tex]\[ T_1 = 21.1 + 273.15 = 294.25 \text{ K} \][/tex]
Next, we are given the conditions at the higher altitude:
- Temperature [tex]\( T_2 = -3.86^{\circ} \text{C} \)[/tex]
- Pressure [tex]\( P_2 = 0.0757 \text{ atm} \)[/tex]
Again, convert the temperature [tex]\( T_2 \)[/tex] to Kelvin:
[tex]\[ T_2 = -3.86 + 273.15 = 269.29 \text{ K} \][/tex]
Also, convert the pressure [tex]\( P_2 \)[/tex] into mmHg (since 1 atm = 760 mmHg):
[tex]\[ P_2 = 0.0757 \times 760 = 57.532 \text{ mmHg} \][/tex]
Now, we are ready to solve for the new volume [tex]\( V_2 \)[/tex] using the Combined Gas Law:
[tex]\[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \][/tex]
Rearranging the formula to solve for [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = \frac{P_1 V_1 T_2}{T_1 P_2} \][/tex]
Substituting the given values into the equation:
[tex]\[ V_2 = \frac{759 \,\text{mmHg} \times 54.0 \,\text{L} \times 269.29 \,\text{K}}{294.25 \,\text{K} \times 57.532 \,\text{mmHg}} \][/tex]
[tex]\[ V_2 = 651.97 \, \text{L} \quad \text{(rounded to two decimal places)} \][/tex]
Therefore, the volume of the weather balloon at the higher altitude is:
[tex]\[ V = 651.97 \, \text{L} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.