IDNLearn.com is the perfect place to get detailed and accurate answers to your questions. Get the information you need from our community of experts, who provide detailed and trustworthy answers.

The marginal revenue (in thousands of dollars) from the sale of [tex]x[/tex] gadgets is given by the following function. The revenue from 130 gadgets is [tex]\$43,255[/tex].

\[ \operatorname{MR}(x) = 4x (x^2 + 28,000)^{-\frac{2}{3}} \]

(a) Find the revenue function.
(b) What is the revenue from selling 250 gadgets?
(c) How many gadgets must be sold for a revenue of at least [tex]\$45,000[/tex]?


Sagot :

Sure, let's approach each part of the problem step-by-step.

### Part (a): Finding the Revenue Function

The marginal revenue (MR) function is given by:
[tex]\[ \operatorname{MR}(x) = 4x \left(x^2 + 28,000\right)^{-\frac{2}{3}} \][/tex]

The revenue function, [tex]\( R(x) \)[/tex], is the integral of the marginal revenue function:
[tex]\[ R(x) = \int \operatorname{MR}(x) \, dx \][/tex]

So, we need to integrate [tex]\( \operatorname{MR}(x) \)[/tex]:
[tex]\[ R(x) = \int 4x \left(x^2 + 28,000\right)^{-\frac{2}{3}} \, dx \][/tex]

To integrate this, we use the substitution method. Let:
[tex]\[ u = x^2 + 28,000 \][/tex]
Then:
[tex]\[ du = 2x \, dx \quad \Rightarrow \quad \frac{du}{2} = x \, dx \][/tex]

Substituting [tex]\( u \)[/tex] and [tex]\( \frac{du}{2} \)[/tex] into the integral, we get:
[tex]\[ R(x) = \int 4x \left(u\right)^{-\frac{2}{3}} \cdot \frac{du}{2x} = 2 \int u^{-\frac{2}{3}} \, du \][/tex]

Now, integrate [tex]\( u^{-\frac{2}{3}} \)[/tex]:
[tex]\[ \int u^{-\frac{2}{3}} \, du = u^{1 - \frac{2}{3}} \cdot \frac{3}{1} = 3u^{\frac{1}{3}} \][/tex]

So:
[tex]\[ R(x) = 2 \cdot 3u^{\frac{1}{3}} + C = 6u^{\frac{1}{3}} + C \][/tex]

Substitute back [tex]\( u = x^2 + 28,000 \)[/tex]:
[tex]\[ R(x) = 6 \left(x^2 + 28,000\right)^{\frac{1}{3}} + C \][/tex]

We need to find [tex]\( C \)[/tex]. We know [tex]\( R(130) = 43,255 \)[/tex] thousands of dollars.

Substitute [tex]\( x = 130 \)[/tex] and [tex]\( R(130) \)[/tex]:
[tex]\[ 43,255 = 6 \left(130^2 + 28,000\right)^{\frac{1}{3}} + C \][/tex]

Calculate [tex]\( 130^2 + 28,000 \)[/tex]:
[tex]\[ 130^2 = 16,900 \quad \Rightarrow \quad 130^2 + 28,000 = 44,900 \][/tex]

Thus:
[tex]\[ 43,255 = 6 \left(44,900\right)^{\frac{1}{3}} + C \][/tex]

Compute [tex]\( (44,900)^{\frac{1}{3}} \)[/tex]:
[tex]\[ (44,900)^{\frac{1}{3}} \approx 35.796 \][/tex]

So:
[tex]\[ 43,255 = 6 \cdot 35.796 + C \][/tex]
[tex]\[ 43,255 \approx 214.776 + C \][/tex]
[tex]\[ C \approx 43,255 - 214.776 \approx 43,040.224 \][/tex]

Therefore, the revenue function is:
[tex]\[ R(x) \approx 6 \left(x^2 + 28,000\right)^{\frac{1}{3}} + 43,040.224 \][/tex]

### Part (b): Revenue from Selling 250 Gadgets

Now, we need to find [tex]\( R(250) \)[/tex]:
[tex]\[ R(250) = 6 \left(250^2 + 28,000\right)^{\frac{1}{3}} + 43,040.224 \][/tex]

Compute [tex]\( 250^2 + 28,000 \)[/tex]:
[tex]\[ 250^2 = 62,500 \quad \Rightarrow \quad 250^2 + 28,000 = 90,500 \][/tex]

Now:
[tex]\[ (90,500)^{\frac{1}{3}} \approx 44.721 \][/tex]

So:
[tex]\[ R(250) \approx 6 \cdot 44.721 + 43,040.224 \][/tex]
[tex]\[ R(250) \approx 268.326 + 43,040.224 \approx 43,308.55 \text{ thousands of dollars} \][/tex]

### Part (c): Gadgets Sold for at Least [tex]$45,000 We need to solve for \( x \) in: \[ R(x) = 45,000 \quad \Rightarrow \quad 45,000 = 6 \left(x^2 + 28,000\right)^{\frac{1}{3}} + 43,040.224 \] Rearrange to solve for \( \left(x^2 + 28,000\right)^{\frac{1}{3}} \): \[ 45,000 - 43,040.224 = 6 \left(x^2 + 28,000\right)^{\frac{1}{3}} \] \[ 1,959.776 = 6 \left(x^2 + 28,000\right)^{\frac{1}{3}} \] \[ 326.629 \approx \left(x^2 + 28,000\right)^{\frac{1}{3}} \] Now, cube both sides: \[ 326.629^3 \approx x^2 + 28,000 \] Calculate \( 326.629^3 \): \[ 326.629^3 \approx 34,867,467 \] Thus: \[ 34,867,467 - 28,000 = x^2 \] \[ x^2 \approx 34,839,467 \] \[ x \approx \sqrt{34,839,467} \approx 5,904 \] So, to achieve a revenue of at least \$[/tex]45,000, approximately 5,904 gadgets must be sold.