Discover a world of knowledge and community-driven answers at IDNLearn.com today. Discover reliable and timely information on any topic from our network of experienced professionals.
Sagot :
To determine the standard Gibbs free energy change ([tex]\( \Delta G^\circ \)[/tex]) for the given reaction:
[tex]\[ \text{Zn (s) + Cu}^{2+} \text{(aq)} \rightarrow \text{Zn}^{2+} \text{(aq) + Cu (s)} \][/tex]
we proceed through the following steps:
### Step 1: Identify Standard Reduction Potentials
The standard reduction potentials ([tex]\( E^\circ \)[/tex]) for the half-reactions are:
- [tex]\( \text{Cu}^{2+} + 2e^- \rightarrow \text{Cu} \)[/tex] [tex]\( E^\circ = 0.34 \, \text{V} \)[/tex]
- [tex]\( \text{Zn}^{2+} + 2e^- \rightarrow \text{Zn} \)[/tex] [tex]\( E^\circ = -0.76 \, \text{V} \)[/tex]
### Step 2: Determine the Overall Cell Potential
The overall cell potential [tex]\( E_{\text{cell}}^\circ \)[/tex] can be calculated using the standard reduction potentials of the two half-reactions. For the given reaction:
[tex]\[ \text{Zn (s) + Cu}^{2+} \text{(aq)} \rightarrow \text{Zn}^{2+} \text{(aq) + Cu (s)} \][/tex]
the cell potential is given by the difference:
[tex]\[ E_{\text{cell}}^\circ = E^\circ_{\text{Cu}^{2+}/\text{Cu}} - E^\circ_{\text{Zn}^{2+}/\text{Zn}} \][/tex]
Plugging in the given standard reduction potentials:
[tex]\[ E_{\text{cell}}^\circ = 0.34 \, \text{V} - (-0.76 \, \text{V}) \][/tex]
[tex]\[ E_{\text{cell}}^\circ = 0.34 \, \text{V} + 0.76 \, \text{V} \][/tex]
[tex]\[ E_{\text{cell}}^\circ = 1.10 \, \text{V} \][/tex]
### Step 3: Use Faraday's Constant
Faraday's constant ([tex]\( F \)[/tex]) is:
[tex]\[ F = 96485 \, \text{C/mol e}^- \][/tex]
### Step 4: Determine Number of Electrons Transferred
In the given electrochemical reaction, 2 moles of electrons are transferred ([tex]\( n = 2 \)[/tex]).
### Step 5: Calculate Standard Gibbs Free Energy Change
The standard Gibbs free energy change ([tex]\( \Delta G^\circ \)[/tex]) is related to the standard cell potential by the equation:
[tex]\[ \Delta G^\circ = -nFE_{\text{cell}}^\circ \][/tex]
Plugging in the values:
[tex]\[ \Delta G^\circ = - (2 \, \text{mol e}^-) \times (96485 \, \text{C/mol e}^-) \times (1.10 \, \text{V}) \][/tex]
Perform the multiplication:
[tex]\[ \Delta G^\circ = -2 \times 96485 \times 1.10 \][/tex]
[tex]\[ \Delta G^\circ = -212267 \, \text{J} \][/tex]
Hence, the standard Gibbs free energy change for the reaction is:
[tex]\[ \Delta G^\circ = -212267 \, \text{J} \][/tex]
Or equivalently:
[tex]\[ \Delta G^\circ = -212.267 \, \text{kJ} \][/tex]
Therefore, the standard Gibbs free energy change for the given reaction is [tex]\(-212267 \, \text{J}\)[/tex] (or [tex]\(-212.267 \, \text{kJ}\)[/tex]).
[tex]\[ \text{Zn (s) + Cu}^{2+} \text{(aq)} \rightarrow \text{Zn}^{2+} \text{(aq) + Cu (s)} \][/tex]
we proceed through the following steps:
### Step 1: Identify Standard Reduction Potentials
The standard reduction potentials ([tex]\( E^\circ \)[/tex]) for the half-reactions are:
- [tex]\( \text{Cu}^{2+} + 2e^- \rightarrow \text{Cu} \)[/tex] [tex]\( E^\circ = 0.34 \, \text{V} \)[/tex]
- [tex]\( \text{Zn}^{2+} + 2e^- \rightarrow \text{Zn} \)[/tex] [tex]\( E^\circ = -0.76 \, \text{V} \)[/tex]
### Step 2: Determine the Overall Cell Potential
The overall cell potential [tex]\( E_{\text{cell}}^\circ \)[/tex] can be calculated using the standard reduction potentials of the two half-reactions. For the given reaction:
[tex]\[ \text{Zn (s) + Cu}^{2+} \text{(aq)} \rightarrow \text{Zn}^{2+} \text{(aq) + Cu (s)} \][/tex]
the cell potential is given by the difference:
[tex]\[ E_{\text{cell}}^\circ = E^\circ_{\text{Cu}^{2+}/\text{Cu}} - E^\circ_{\text{Zn}^{2+}/\text{Zn}} \][/tex]
Plugging in the given standard reduction potentials:
[tex]\[ E_{\text{cell}}^\circ = 0.34 \, \text{V} - (-0.76 \, \text{V}) \][/tex]
[tex]\[ E_{\text{cell}}^\circ = 0.34 \, \text{V} + 0.76 \, \text{V} \][/tex]
[tex]\[ E_{\text{cell}}^\circ = 1.10 \, \text{V} \][/tex]
### Step 3: Use Faraday's Constant
Faraday's constant ([tex]\( F \)[/tex]) is:
[tex]\[ F = 96485 \, \text{C/mol e}^- \][/tex]
### Step 4: Determine Number of Electrons Transferred
In the given electrochemical reaction, 2 moles of electrons are transferred ([tex]\( n = 2 \)[/tex]).
### Step 5: Calculate Standard Gibbs Free Energy Change
The standard Gibbs free energy change ([tex]\( \Delta G^\circ \)[/tex]) is related to the standard cell potential by the equation:
[tex]\[ \Delta G^\circ = -nFE_{\text{cell}}^\circ \][/tex]
Plugging in the values:
[tex]\[ \Delta G^\circ = - (2 \, \text{mol e}^-) \times (96485 \, \text{C/mol e}^-) \times (1.10 \, \text{V}) \][/tex]
Perform the multiplication:
[tex]\[ \Delta G^\circ = -2 \times 96485 \times 1.10 \][/tex]
[tex]\[ \Delta G^\circ = -212267 \, \text{J} \][/tex]
Hence, the standard Gibbs free energy change for the reaction is:
[tex]\[ \Delta G^\circ = -212267 \, \text{J} \][/tex]
Or equivalently:
[tex]\[ \Delta G^\circ = -212.267 \, \text{kJ} \][/tex]
Therefore, the standard Gibbs free energy change for the given reaction is [tex]\(-212267 \, \text{J}\)[/tex] (or [tex]\(-212.267 \, \text{kJ}\)[/tex]).
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.