From simple questions to complex issues, IDNLearn.com has the answers you need. Find reliable solutions to your questions quickly and accurately with help from our dedicated community of experts.
Sagot :
To determine the standard Gibbs free energy change ([tex]\( \Delta G^\circ \)[/tex]) for the given reaction:
[tex]\[ \text{Zn (s) + Cu}^{2+} \text{(aq)} \rightarrow \text{Zn}^{2+} \text{(aq) + Cu (s)} \][/tex]
we proceed through the following steps:
### Step 1: Identify Standard Reduction Potentials
The standard reduction potentials ([tex]\( E^\circ \)[/tex]) for the half-reactions are:
- [tex]\( \text{Cu}^{2+} + 2e^- \rightarrow \text{Cu} \)[/tex] [tex]\( E^\circ = 0.34 \, \text{V} \)[/tex]
- [tex]\( \text{Zn}^{2+} + 2e^- \rightarrow \text{Zn} \)[/tex] [tex]\( E^\circ = -0.76 \, \text{V} \)[/tex]
### Step 2: Determine the Overall Cell Potential
The overall cell potential [tex]\( E_{\text{cell}}^\circ \)[/tex] can be calculated using the standard reduction potentials of the two half-reactions. For the given reaction:
[tex]\[ \text{Zn (s) + Cu}^{2+} \text{(aq)} \rightarrow \text{Zn}^{2+} \text{(aq) + Cu (s)} \][/tex]
the cell potential is given by the difference:
[tex]\[ E_{\text{cell}}^\circ = E^\circ_{\text{Cu}^{2+}/\text{Cu}} - E^\circ_{\text{Zn}^{2+}/\text{Zn}} \][/tex]
Plugging in the given standard reduction potentials:
[tex]\[ E_{\text{cell}}^\circ = 0.34 \, \text{V} - (-0.76 \, \text{V}) \][/tex]
[tex]\[ E_{\text{cell}}^\circ = 0.34 \, \text{V} + 0.76 \, \text{V} \][/tex]
[tex]\[ E_{\text{cell}}^\circ = 1.10 \, \text{V} \][/tex]
### Step 3: Use Faraday's Constant
Faraday's constant ([tex]\( F \)[/tex]) is:
[tex]\[ F = 96485 \, \text{C/mol e}^- \][/tex]
### Step 4: Determine Number of Electrons Transferred
In the given electrochemical reaction, 2 moles of electrons are transferred ([tex]\( n = 2 \)[/tex]).
### Step 5: Calculate Standard Gibbs Free Energy Change
The standard Gibbs free energy change ([tex]\( \Delta G^\circ \)[/tex]) is related to the standard cell potential by the equation:
[tex]\[ \Delta G^\circ = -nFE_{\text{cell}}^\circ \][/tex]
Plugging in the values:
[tex]\[ \Delta G^\circ = - (2 \, \text{mol e}^-) \times (96485 \, \text{C/mol e}^-) \times (1.10 \, \text{V}) \][/tex]
Perform the multiplication:
[tex]\[ \Delta G^\circ = -2 \times 96485 \times 1.10 \][/tex]
[tex]\[ \Delta G^\circ = -212267 \, \text{J} \][/tex]
Hence, the standard Gibbs free energy change for the reaction is:
[tex]\[ \Delta G^\circ = -212267 \, \text{J} \][/tex]
Or equivalently:
[tex]\[ \Delta G^\circ = -212.267 \, \text{kJ} \][/tex]
Therefore, the standard Gibbs free energy change for the given reaction is [tex]\(-212267 \, \text{J}\)[/tex] (or [tex]\(-212.267 \, \text{kJ}\)[/tex]).
[tex]\[ \text{Zn (s) + Cu}^{2+} \text{(aq)} \rightarrow \text{Zn}^{2+} \text{(aq) + Cu (s)} \][/tex]
we proceed through the following steps:
### Step 1: Identify Standard Reduction Potentials
The standard reduction potentials ([tex]\( E^\circ \)[/tex]) for the half-reactions are:
- [tex]\( \text{Cu}^{2+} + 2e^- \rightarrow \text{Cu} \)[/tex] [tex]\( E^\circ = 0.34 \, \text{V} \)[/tex]
- [tex]\( \text{Zn}^{2+} + 2e^- \rightarrow \text{Zn} \)[/tex] [tex]\( E^\circ = -0.76 \, \text{V} \)[/tex]
### Step 2: Determine the Overall Cell Potential
The overall cell potential [tex]\( E_{\text{cell}}^\circ \)[/tex] can be calculated using the standard reduction potentials of the two half-reactions. For the given reaction:
[tex]\[ \text{Zn (s) + Cu}^{2+} \text{(aq)} \rightarrow \text{Zn}^{2+} \text{(aq) + Cu (s)} \][/tex]
the cell potential is given by the difference:
[tex]\[ E_{\text{cell}}^\circ = E^\circ_{\text{Cu}^{2+}/\text{Cu}} - E^\circ_{\text{Zn}^{2+}/\text{Zn}} \][/tex]
Plugging in the given standard reduction potentials:
[tex]\[ E_{\text{cell}}^\circ = 0.34 \, \text{V} - (-0.76 \, \text{V}) \][/tex]
[tex]\[ E_{\text{cell}}^\circ = 0.34 \, \text{V} + 0.76 \, \text{V} \][/tex]
[tex]\[ E_{\text{cell}}^\circ = 1.10 \, \text{V} \][/tex]
### Step 3: Use Faraday's Constant
Faraday's constant ([tex]\( F \)[/tex]) is:
[tex]\[ F = 96485 \, \text{C/mol e}^- \][/tex]
### Step 4: Determine Number of Electrons Transferred
In the given electrochemical reaction, 2 moles of electrons are transferred ([tex]\( n = 2 \)[/tex]).
### Step 5: Calculate Standard Gibbs Free Energy Change
The standard Gibbs free energy change ([tex]\( \Delta G^\circ \)[/tex]) is related to the standard cell potential by the equation:
[tex]\[ \Delta G^\circ = -nFE_{\text{cell}}^\circ \][/tex]
Plugging in the values:
[tex]\[ \Delta G^\circ = - (2 \, \text{mol e}^-) \times (96485 \, \text{C/mol e}^-) \times (1.10 \, \text{V}) \][/tex]
Perform the multiplication:
[tex]\[ \Delta G^\circ = -2 \times 96485 \times 1.10 \][/tex]
[tex]\[ \Delta G^\circ = -212267 \, \text{J} \][/tex]
Hence, the standard Gibbs free energy change for the reaction is:
[tex]\[ \Delta G^\circ = -212267 \, \text{J} \][/tex]
Or equivalently:
[tex]\[ \Delta G^\circ = -212.267 \, \text{kJ} \][/tex]
Therefore, the standard Gibbs free energy change for the given reaction is [tex]\(-212267 \, \text{J}\)[/tex] (or [tex]\(-212.267 \, \text{kJ}\)[/tex]).
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. IDNLearn.com provides the best answers to your questions. Thank you for visiting, and come back soon for more helpful information.