IDNLearn.com: Your one-stop destination for finding reliable answers. Discover in-depth and trustworthy answers from our extensive network of knowledgeable professionals.
Sagot :
To calculate the De Broglie wavelength of an electron in the 3rd orbit of a hydrogen atom, we need to go through several steps. Let's break down the calculations step by step.
### Step 1: Principal Quantum Number
The electron is in the 3rd orbit of a hydrogen atom, which means the principal quantum number [tex]\( n \)[/tex] is 3.
### Step 2: Energy of the Electron in the 3rd Orbit
The energy of an electron in the nth orbit of a hydrogen atom is given by:
[tex]\[ E_n = -\frac{13.6 \, \text{eV}}{n^2} \][/tex]
For [tex]\( n = 3 \)[/tex]:
[tex]\[ E_3 = -\frac{13.6}{3^2} = -\frac{13.6}{9} \approx -1.511 \, \text{eV} \][/tex]
### Step 3: Convert Energy to Joules
To convert electron volts (eV) to Joules (J), use the conversion factor:
[tex]\[ 1 \, \text{eV} = 1.60218 \times 10^{-19} \, \text{J} \][/tex]
Therefore,
[tex]\[ E_3 \approx -1.511 \, \text{eV} \times 1.60218 \times 10^{-19} \, \text{J/eV} \approx -2.421072 \times 10^{-19} \, \text{J} \][/tex]
### Step 4: Calculate the Velocity of the Electron
Using the relationship between kinetic energy and velocity, where the kinetic energy [tex]\( E_k \)[/tex] is the magnitude of [tex]\( E_3 \)[/tex], we have:
[tex]\[ E_k = \frac{1}{2} mv^2 \][/tex]
Solving for velocity [tex]\( v \)[/tex]:
[tex]\[ v = \left( \frac{2E_k}{m} \right)^{0.5} \][/tex]
Here, the mass of the electron [tex]\( m \)[/tex] is:
[tex]\[ m = 9.10938356 \times 10^{-31} \, \text{kg} \][/tex]
Substitute [tex]\( E_k = 2.421072 \times 10^{-19} \, \text{J} \)[/tex]:
[tex]\[ v = \left( \frac{2 \times 2.421072 \times 10^{-19} \, \text{J}}{9.10938356 \times 10^{-31} \, \text{kg}} \right)^{0.5} \approx 729078.608 \, \text{m/s} \][/tex]
### Step 5: Calculate the De Broglie Wavelength
The De Broglie wavelength [tex]\( \lambda \)[/tex] is given by:
[tex]\[ \lambda = \frac{h}{mv} \][/tex]
Where [tex]\( h \)[/tex] is Planck's constant:
[tex]\[ h = 6.62607015 \times 10^{-34} \, \text{J} \cdot \text{s} \][/tex]
Substitute the values:
[tex]\[ \lambda = \frac{6.62607015 \times 10^{-34}}{9.10938356 \times 10^{-31} \times 729078.608} \approx 9.976833 \times 10^{-10} \, \text{m} \][/tex]
### Step 6: Convert Wavelength to Angstroms
To convert from meters to angstroms, use the conversion factor:
[tex]\[ 1 \, \text{Å} = 10^{-10} \, \text{m} \][/tex]
Thus,
[tex]\[ \lambda \approx 9.976833 \times 10^{-10} \, \text{m} \times \frac{1 \, \text{Å}}{10^{-10} \, \text{m}} \approx 9.976833 \, \text{Å} \][/tex]
### Final Answer
The De Broglie wavelength of an electron in the 3rd orbit of a hydrogen atom is approximately [tex]\( 9.9768 \, \text{Å} \)[/tex].
### Step 1: Principal Quantum Number
The electron is in the 3rd orbit of a hydrogen atom, which means the principal quantum number [tex]\( n \)[/tex] is 3.
### Step 2: Energy of the Electron in the 3rd Orbit
The energy of an electron in the nth orbit of a hydrogen atom is given by:
[tex]\[ E_n = -\frac{13.6 \, \text{eV}}{n^2} \][/tex]
For [tex]\( n = 3 \)[/tex]:
[tex]\[ E_3 = -\frac{13.6}{3^2} = -\frac{13.6}{9} \approx -1.511 \, \text{eV} \][/tex]
### Step 3: Convert Energy to Joules
To convert electron volts (eV) to Joules (J), use the conversion factor:
[tex]\[ 1 \, \text{eV} = 1.60218 \times 10^{-19} \, \text{J} \][/tex]
Therefore,
[tex]\[ E_3 \approx -1.511 \, \text{eV} \times 1.60218 \times 10^{-19} \, \text{J/eV} \approx -2.421072 \times 10^{-19} \, \text{J} \][/tex]
### Step 4: Calculate the Velocity of the Electron
Using the relationship between kinetic energy and velocity, where the kinetic energy [tex]\( E_k \)[/tex] is the magnitude of [tex]\( E_3 \)[/tex], we have:
[tex]\[ E_k = \frac{1}{2} mv^2 \][/tex]
Solving for velocity [tex]\( v \)[/tex]:
[tex]\[ v = \left( \frac{2E_k}{m} \right)^{0.5} \][/tex]
Here, the mass of the electron [tex]\( m \)[/tex] is:
[tex]\[ m = 9.10938356 \times 10^{-31} \, \text{kg} \][/tex]
Substitute [tex]\( E_k = 2.421072 \times 10^{-19} \, \text{J} \)[/tex]:
[tex]\[ v = \left( \frac{2 \times 2.421072 \times 10^{-19} \, \text{J}}{9.10938356 \times 10^{-31} \, \text{kg}} \right)^{0.5} \approx 729078.608 \, \text{m/s} \][/tex]
### Step 5: Calculate the De Broglie Wavelength
The De Broglie wavelength [tex]\( \lambda \)[/tex] is given by:
[tex]\[ \lambda = \frac{h}{mv} \][/tex]
Where [tex]\( h \)[/tex] is Planck's constant:
[tex]\[ h = 6.62607015 \times 10^{-34} \, \text{J} \cdot \text{s} \][/tex]
Substitute the values:
[tex]\[ \lambda = \frac{6.62607015 \times 10^{-34}}{9.10938356 \times 10^{-31} \times 729078.608} \approx 9.976833 \times 10^{-10} \, \text{m} \][/tex]
### Step 6: Convert Wavelength to Angstroms
To convert from meters to angstroms, use the conversion factor:
[tex]\[ 1 \, \text{Å} = 10^{-10} \, \text{m} \][/tex]
Thus,
[tex]\[ \lambda \approx 9.976833 \times 10^{-10} \, \text{m} \times \frac{1 \, \text{Å}}{10^{-10} \, \text{m}} \approx 9.976833 \, \text{Å} \][/tex]
### Final Answer
The De Broglie wavelength of an electron in the 3rd orbit of a hydrogen atom is approximately [tex]\( 9.9768 \, \text{Å} \)[/tex].
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Discover the answers you need at IDNLearn.com. Thank you for visiting, and we hope to see you again for more solutions.