Find the best answers to your questions with the help of IDNLearn.com's knowledgeable users. Find in-depth and trustworthy answers to all your questions from our experienced community members.
Sagot :
To find the limit of the given sum as [tex]\( n \)[/tex] approaches infinity, we can transform the discrete sum into an integral, which is often easier to evaluate in such cases.
Given the sum:
[tex]\[ \lim_{n \to \infty} \sum_{r=1}^n \left(\frac{r}{n^2 + r}\right) \][/tex]
1. Rewrite the term inside the summation:
Consider the expression inside the sum:
[tex]\[ \frac{r}{n^2 + r} \][/tex]
For large [tex]\( n \)[/tex], [tex]\( r \)[/tex] will vary from 1 to [tex]\( n \)[/tex]. We divide the numerator and the denominator by [tex]\( n^2 \)[/tex] to get:
[tex]\[ \frac{r}{n^2 + r} = \frac{r/n^2}{1 + r/n^2} = \frac{\frac{r}{n^2}}{1 + \frac{r}{n^2}} \][/tex]
2. Transform the sum into an integral:
We recognize that this sum as [tex]\( n \to \infty \)[/tex] can be approximated by an integral. Define [tex]\( x = \frac{r}{n} \)[/tex], so [tex]\( r = nx \)[/tex]. When [tex]\( r \)[/tex] ranges from 1 to [tex]\( n \)[/tex], [tex]\( x \)[/tex] ranges from [tex]\( \frac{1}{n} \)[/tex] to 1. The sum now becomes:
[tex]\[ \sum_{r=1}^n \left(\frac{\frac{r}{n^2}}{1 + \frac{r}{n^2}}\right) \approx \sum_{r=1}^n \left( \frac{x/n}{1 + x/n} \cdot n \cdot \frac{1}{n} \right) = \sum_{r=1}^n \left( \frac{x/n}{1 + x/n} \cdot \frac{1}{n} \right) \][/tex]
We recognize this as a Riemann sum for the integral:
[tex]\[ \int_{0}^{1} \frac{x}{1 + x} \, dx \][/tex]
3. Evaluate the integral:
Now, we need to evaluate the integral:
[tex]\[ \int_{0}^{1} \frac{x}{1 + x} \, dx \][/tex]
Perform the substitution [tex]\( u = 1 + x \)[/tex], hence [tex]\( du = dx \)[/tex], and when [tex]\( x = 0 \)[/tex], [tex]\( u = 1 \)[/tex]; when [tex]\( x = 1 \)[/tex], [tex]\( u = 2 \)[/tex]:
[tex]\[ \int_{0}^{1} \frac{x}{1 + x} \, dx = \int_{1}^{2} \frac{u-1}{u} \, du = \int_{1}^{2} \left(1 - \frac{1}{u}\right) \, du \][/tex]
Calculate the integral:
[tex]\[ \int_{1}^{2} 1 \, du - \int_{1}^{2} \frac{1}{u} \, du = \left[u \right]_{1}^{2} - \left[\ln|u| \right]_{1}^{2} \][/tex]
Evaluate these terms:
[tex]\[ \left[u \right]_{1}^{2} = 2 - 1 = 1 \][/tex]
[tex]\[ \left[\ln|u| \right]_{1}^{2} = \ln|2| - \ln|1| = \ln 2 - 0 = \ln 2 \][/tex]
Combine these results:
[tex]\[ 1 - \ln 2 \][/tex]
Therefore, the value of the limit is:
[tex]\[ \boxed{1 - \ln 2} \][/tex]
Given the sum:
[tex]\[ \lim_{n \to \infty} \sum_{r=1}^n \left(\frac{r}{n^2 + r}\right) \][/tex]
1. Rewrite the term inside the summation:
Consider the expression inside the sum:
[tex]\[ \frac{r}{n^2 + r} \][/tex]
For large [tex]\( n \)[/tex], [tex]\( r \)[/tex] will vary from 1 to [tex]\( n \)[/tex]. We divide the numerator and the denominator by [tex]\( n^2 \)[/tex] to get:
[tex]\[ \frac{r}{n^2 + r} = \frac{r/n^2}{1 + r/n^2} = \frac{\frac{r}{n^2}}{1 + \frac{r}{n^2}} \][/tex]
2. Transform the sum into an integral:
We recognize that this sum as [tex]\( n \to \infty \)[/tex] can be approximated by an integral. Define [tex]\( x = \frac{r}{n} \)[/tex], so [tex]\( r = nx \)[/tex]. When [tex]\( r \)[/tex] ranges from 1 to [tex]\( n \)[/tex], [tex]\( x \)[/tex] ranges from [tex]\( \frac{1}{n} \)[/tex] to 1. The sum now becomes:
[tex]\[ \sum_{r=1}^n \left(\frac{\frac{r}{n^2}}{1 + \frac{r}{n^2}}\right) \approx \sum_{r=1}^n \left( \frac{x/n}{1 + x/n} \cdot n \cdot \frac{1}{n} \right) = \sum_{r=1}^n \left( \frac{x/n}{1 + x/n} \cdot \frac{1}{n} \right) \][/tex]
We recognize this as a Riemann sum for the integral:
[tex]\[ \int_{0}^{1} \frac{x}{1 + x} \, dx \][/tex]
3. Evaluate the integral:
Now, we need to evaluate the integral:
[tex]\[ \int_{0}^{1} \frac{x}{1 + x} \, dx \][/tex]
Perform the substitution [tex]\( u = 1 + x \)[/tex], hence [tex]\( du = dx \)[/tex], and when [tex]\( x = 0 \)[/tex], [tex]\( u = 1 \)[/tex]; when [tex]\( x = 1 \)[/tex], [tex]\( u = 2 \)[/tex]:
[tex]\[ \int_{0}^{1} \frac{x}{1 + x} \, dx = \int_{1}^{2} \frac{u-1}{u} \, du = \int_{1}^{2} \left(1 - \frac{1}{u}\right) \, du \][/tex]
Calculate the integral:
[tex]\[ \int_{1}^{2} 1 \, du - \int_{1}^{2} \frac{1}{u} \, du = \left[u \right]_{1}^{2} - \left[\ln|u| \right]_{1}^{2} \][/tex]
Evaluate these terms:
[tex]\[ \left[u \right]_{1}^{2} = 2 - 1 = 1 \][/tex]
[tex]\[ \left[\ln|u| \right]_{1}^{2} = \ln|2| - \ln|1| = \ln 2 - 0 = \ln 2 \][/tex]
Combine these results:
[tex]\[ 1 - \ln 2 \][/tex]
Therefore, the value of the limit is:
[tex]\[ \boxed{1 - \ln 2} \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. For trustworthy answers, rely on IDNLearn.com. Thanks for visiting, and we look forward to assisting you again.