Find the best solutions to your problems with the help of IDNLearn.com's expert users. Our Q&A platform is designed to provide quick and accurate answers to any questions you may have.
Sagot :
To solve the expression [tex]\(\operatorname{cosec}^{-1}(-1) + \cot^{-1}\left(-\frac{1}{\sqrt{3}}\right)\)[/tex], we need to identify the angles that correspond to these inverse trigonometric functions and then add them together.
### Step 1: Calculate [tex]\(\operatorname{cosec}^{-1}(-1)\)[/tex]
The inverse cosecant function, [tex]\(\operatorname{cosec}^{-1}(x)\)[/tex], refers to the angle [tex]\(\theta\)[/tex] such that [tex]\(\operatorname{cosec}(\theta) = x\)[/tex].
For [tex]\(\operatorname{cosec}^{-1}(-1)\)[/tex], we need to find [tex]\(\theta\)[/tex] such that:
[tex]\[ \operatorname{cosec}(\theta) = -1 \][/tex]
The cosecant function is the reciprocal of the sine function:
[tex]\[ \operatorname{cosec}(\theta) = \frac{1}{\sin(\theta)} \][/tex]
So, we have:
[tex]\[ \frac{1}{\sin(\theta)} = -1 \implies \sin(\theta) = -1 \][/tex]
The angle [tex]\(\theta\)[/tex] that satisfies [tex]\(\sin(\theta) = -1\)[/tex] is [tex]\(\theta = -\frac{\pi}{2}\)[/tex].
Therefore,
[tex]\[ \operatorname{cosec}^{-1}(-1) = -\frac{\pi}{2} \][/tex]
### Step 2: Calculate [tex]\(\cot^{-1}\left(-\frac{1}{\sqrt{3}}\right)\)[/tex]
The inverse cotangent function, [tex]\(\cot^{-1}(x)\)[/tex], refers to the angle [tex]\(\theta\)[/tex] such that [tex]\(\cot(\theta) = x\)[/tex].
For [tex]\(\cot^{-1}\left(-\frac{1}{\sqrt{3}}\right)\)[/tex], we need to find [tex]\(\theta\)[/tex] such that:
[tex]\[ \cot(\theta) = -\frac{1}{\sqrt{3}} \][/tex]
The cotangent function is the reciprocal of the tangent function:
[tex]\[ \cot(\theta) = \frac{1}{\tan(\theta)} \][/tex]
So, we have:
[tex]\[ \frac{1}{\tan(\theta)} = -\frac{1}{\sqrt{3}} \implies \tan(\theta) = -\sqrt{3} \][/tex]
The angle [tex]\(\theta\)[/tex] that satisfies [tex]\(\tan(\theta) = -\sqrt{3}\)[/tex] in the principal range [tex]\([0, \pi)\)[/tex] is [tex]\(\theta = -\frac{\pi}{3}\)[/tex].
Therefore,
[tex]\[ \cot^{-1}\left(-\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{3} \][/tex]
### Step 3: Add the results
Now, we add the angles we found:
[tex]\[ \operatorname{cosec}^{-1}(-1) + \cot^{-1}\left(-\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{2} + -\frac{\pi}{3} \][/tex]
To add these fractions, we first find a common denominator. The common denominator for 2 and 3 is 6:
[tex]\[ -\frac{\pi}{2} = -\frac{3\pi}{6} \][/tex]
[tex]\[ -\frac{\pi}{3} = -\frac{2\pi}{6} \][/tex]
So, the sum is:
[tex]\[ -\frac{3\pi}{6} + -\frac{2\pi}{6} = -\frac{5\pi}{6} \][/tex]
Therefore, the result of the expression [tex]\(\operatorname{cosec}^{-1}(-1) + \cot^{-1}\left(-\frac{1}{\sqrt{3}}\right)\)[/tex] is:
[tex]\[ -\frac{5\pi}{6} \][/tex]
As numerical approximation:
[tex]\[ -\frac{5\pi}{6} \approx -2.617993877991494 \][/tex]
### Step 1: Calculate [tex]\(\operatorname{cosec}^{-1}(-1)\)[/tex]
The inverse cosecant function, [tex]\(\operatorname{cosec}^{-1}(x)\)[/tex], refers to the angle [tex]\(\theta\)[/tex] such that [tex]\(\operatorname{cosec}(\theta) = x\)[/tex].
For [tex]\(\operatorname{cosec}^{-1}(-1)\)[/tex], we need to find [tex]\(\theta\)[/tex] such that:
[tex]\[ \operatorname{cosec}(\theta) = -1 \][/tex]
The cosecant function is the reciprocal of the sine function:
[tex]\[ \operatorname{cosec}(\theta) = \frac{1}{\sin(\theta)} \][/tex]
So, we have:
[tex]\[ \frac{1}{\sin(\theta)} = -1 \implies \sin(\theta) = -1 \][/tex]
The angle [tex]\(\theta\)[/tex] that satisfies [tex]\(\sin(\theta) = -1\)[/tex] is [tex]\(\theta = -\frac{\pi}{2}\)[/tex].
Therefore,
[tex]\[ \operatorname{cosec}^{-1}(-1) = -\frac{\pi}{2} \][/tex]
### Step 2: Calculate [tex]\(\cot^{-1}\left(-\frac{1}{\sqrt{3}}\right)\)[/tex]
The inverse cotangent function, [tex]\(\cot^{-1}(x)\)[/tex], refers to the angle [tex]\(\theta\)[/tex] such that [tex]\(\cot(\theta) = x\)[/tex].
For [tex]\(\cot^{-1}\left(-\frac{1}{\sqrt{3}}\right)\)[/tex], we need to find [tex]\(\theta\)[/tex] such that:
[tex]\[ \cot(\theta) = -\frac{1}{\sqrt{3}} \][/tex]
The cotangent function is the reciprocal of the tangent function:
[tex]\[ \cot(\theta) = \frac{1}{\tan(\theta)} \][/tex]
So, we have:
[tex]\[ \frac{1}{\tan(\theta)} = -\frac{1}{\sqrt{3}} \implies \tan(\theta) = -\sqrt{3} \][/tex]
The angle [tex]\(\theta\)[/tex] that satisfies [tex]\(\tan(\theta) = -\sqrt{3}\)[/tex] in the principal range [tex]\([0, \pi)\)[/tex] is [tex]\(\theta = -\frac{\pi}{3}\)[/tex].
Therefore,
[tex]\[ \cot^{-1}\left(-\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{3} \][/tex]
### Step 3: Add the results
Now, we add the angles we found:
[tex]\[ \operatorname{cosec}^{-1}(-1) + \cot^{-1}\left(-\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{2} + -\frac{\pi}{3} \][/tex]
To add these fractions, we first find a common denominator. The common denominator for 2 and 3 is 6:
[tex]\[ -\frac{\pi}{2} = -\frac{3\pi}{6} \][/tex]
[tex]\[ -\frac{\pi}{3} = -\frac{2\pi}{6} \][/tex]
So, the sum is:
[tex]\[ -\frac{3\pi}{6} + -\frac{2\pi}{6} = -\frac{5\pi}{6} \][/tex]
Therefore, the result of the expression [tex]\(\operatorname{cosec}^{-1}(-1) + \cot^{-1}\left(-\frac{1}{\sqrt{3}}\right)\)[/tex] is:
[tex]\[ -\frac{5\pi}{6} \][/tex]
As numerical approximation:
[tex]\[ -\frac{5\pi}{6} \approx -2.617993877991494 \][/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for trusting IDNLearn.com. We’re dedicated to providing accurate answers, so visit us again for more solutions.