IDNLearn.com: Your one-stop destination for reliable answers to diverse questions. Ask anything and receive prompt, well-informed answers from our community of knowledgeable experts.
Sagot :
Let's go through the solutions to each question one by one.
### Question 7
We need to find the determinant of the matrix [tex]\( A = \frac{1}{2} \left( \begin{array}{ccc} \frac{k}{2} & \frac{9}{2} & 1 \\ 1 & k & 0 \\ 5 & -1 & 1 \end{array} \right) \)[/tex].
First, simplify the matrix:
[tex]\[ A = \frac{1}{2} \left( \begin{array}{ccc} \frac{k}{2} & \frac{9}{2} & 1 \\ 1 & k & 0 \\ 5 & -1 & 1 \end{array} \right) = \left( \begin{array}{ccc} \frac{k}{4} & \frac{9}{4} & \frac{1}{2} \\ \frac{1}{2} & \frac{k}{2} & 0 \\ \frac{5}{2} & -\frac{1}{2} & \frac{1}{2} \end{array} \right) \][/tex]
We can calculate the determinant using cofactor expansion along the first row.
So,
[tex]\[ |A| = \frac{k}{4} \left( \frac{k}{2} \cdot \frac{1}{2} - 0 \cdot -\frac{1}{2} \right) - \frac{9}{4} \left( \frac{1}{2} \cdot \frac{1}{2} - 0 \cdot \frac{5}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \cdot -\frac{1}{2} - \frac{k}{2} \cdot \frac{5}{2} \right) \][/tex]
Simplify each of the terms for ease:
[tex]\[ \frac{k}{4} \left( \frac{k}{4} \right) - \frac{9}{4} \left( \frac{1}{4} \right) + \frac{1}{2} \left( -\frac{1}{4} - \frac{5k}{4} \right) = \frac{k^2}{16} - \frac{9}{16} + \frac{1}{2} \left( -\frac{1}{4} - \frac{5k}{4} \right) = \frac{k^2}{16} - \frac{9}{16} + \left( -\frac{1}{8} - \frac{5k}{8} \right) = \frac{k^2}{16} - \frac{9}{16} - \frac{1}{8} - \frac{5k}{8} = \frac{k^2 - 10k - 11}{16} \][/tex]
Thus, the correct answer is:
[tex]\[ (c) \ |A| = \frac{1}{16}(k^2 - 10k - 11) \][/tex]
### Question 8
Matrix [tex]\(B\)[/tex] needs to be singular (non-invertible), which means its determinant should be zero:
[tex]\[ B = \left( \begin{array}{ccc} 1 & k & 4 \\ 1 & 1 & 1 \\ -1 & -1 & 1 \end{array} \right) \][/tex]
Calculating the determinant of [tex]\( B \)[/tex]:
[tex]\[ |B|= 1\left(1 \cdot 1 - 1(-1) \right) - k\left(1 \cdot 1 - 1(-1) \right) + 4\left(1 \cdot (-1) - 1(-1)\right) = 1(2) - k(2) + 4(0) = 2 - 2k \][/tex]
Set the determinant to zero for the matrix to be singular:
[tex]\[ 2 - 2k = 0 \implies k = 1 \][/tex]
However, the options provided do not match. This implies there's a missing investigation or misinterpretion.
None of the given options matches.
### Question 9
Given [tex]\( A = \left( \begin{array}{ccc} 1 & -6 & 0 \\ -1 & 2 & -3 \\ 0 & 0 & -1 \end{array} \right) \)[/tex], we calculate the characteristic polynomial:
[tex]\[ |A - \lambda I| = \left| \begin{array}{ccc} 1 - \lambda & -6 & 0 \\ -1 & 2 - \lambda & -3 \\ 0 & 0 & -1 - \lambda \end{array} \right| \][/tex]
Expanding the determinant:
[tex]\[ (1-\lambda) \left| \begin{array}{cc} 2-\lambda & -3 \\ 0 & -1-\lambda \end{array} \right| - (-6) \left| \begin{array}{cc} -1 & -3 \\ 0 & -1-\lambda \end{array} \right| \][/tex]
[tex]\[ (1-\lambda) [(2-\lambda)(-1-\lambda)] - (-6) (-1) = (1-\lambda) (\lambda^2 - \lambda - 2) - 6 = \lambda^3 - \lambda^2 - 2\lambda - \lambda^2 + \lambda + 2 -6 =0 = \lambda^3 - 2 \lambda^2 -1 \lambda -4 = (\lambda +1, \lambda +1,\lambda -2) \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{(c) \ \lambda_1=-1, \text{ a double eigenvalue and } \lambda_2 = - 4} ] ### Question 10 The \((A-\lambda_1 I) u = 0\) Given \(\lambda_1 = -1\): \[A-(\lambda_{1}I) = \left( \begin{array}{ccc} 2 & -6 & 0 \\ -1 & 3 & -3 \\ 0 & 0 & 0 \end{array} \right)\][/tex]
Row reduce to get:
[tex]\[ u \to (\alpha (3, 1 , 0), alpha \in R)\][/tex]
The corresponding eigenvevctor is 3,1,0
\boxed{ (Final answer alpha(c) 3,1,0) none of the answer matches }]
### Question 11
Given [tex]\(A(A-\lambda_2)X=0\)[/tex] where [tex]\(\lambda_2=4\)[/tex]
\[
A-\lambda_2(X)=x0
Nullifying the third row : for \lambda2 there are
(2, -1,0)
So:
\[ \boxed{(a) -(2,1,1);ivial function [}
### Question 7
We need to find the determinant of the matrix [tex]\( A = \frac{1}{2} \left( \begin{array}{ccc} \frac{k}{2} & \frac{9}{2} & 1 \\ 1 & k & 0 \\ 5 & -1 & 1 \end{array} \right) \)[/tex].
First, simplify the matrix:
[tex]\[ A = \frac{1}{2} \left( \begin{array}{ccc} \frac{k}{2} & \frac{9}{2} & 1 \\ 1 & k & 0 \\ 5 & -1 & 1 \end{array} \right) = \left( \begin{array}{ccc} \frac{k}{4} & \frac{9}{4} & \frac{1}{2} \\ \frac{1}{2} & \frac{k}{2} & 0 \\ \frac{5}{2} & -\frac{1}{2} & \frac{1}{2} \end{array} \right) \][/tex]
We can calculate the determinant using cofactor expansion along the first row.
So,
[tex]\[ |A| = \frac{k}{4} \left( \frac{k}{2} \cdot \frac{1}{2} - 0 \cdot -\frac{1}{2} \right) - \frac{9}{4} \left( \frac{1}{2} \cdot \frac{1}{2} - 0 \cdot \frac{5}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \cdot -\frac{1}{2} - \frac{k}{2} \cdot \frac{5}{2} \right) \][/tex]
Simplify each of the terms for ease:
[tex]\[ \frac{k}{4} \left( \frac{k}{4} \right) - \frac{9}{4} \left( \frac{1}{4} \right) + \frac{1}{2} \left( -\frac{1}{4} - \frac{5k}{4} \right) = \frac{k^2}{16} - \frac{9}{16} + \frac{1}{2} \left( -\frac{1}{4} - \frac{5k}{4} \right) = \frac{k^2}{16} - \frac{9}{16} + \left( -\frac{1}{8} - \frac{5k}{8} \right) = \frac{k^2}{16} - \frac{9}{16} - \frac{1}{8} - \frac{5k}{8} = \frac{k^2 - 10k - 11}{16} \][/tex]
Thus, the correct answer is:
[tex]\[ (c) \ |A| = \frac{1}{16}(k^2 - 10k - 11) \][/tex]
### Question 8
Matrix [tex]\(B\)[/tex] needs to be singular (non-invertible), which means its determinant should be zero:
[tex]\[ B = \left( \begin{array}{ccc} 1 & k & 4 \\ 1 & 1 & 1 \\ -1 & -1 & 1 \end{array} \right) \][/tex]
Calculating the determinant of [tex]\( B \)[/tex]:
[tex]\[ |B|= 1\left(1 \cdot 1 - 1(-1) \right) - k\left(1 \cdot 1 - 1(-1) \right) + 4\left(1 \cdot (-1) - 1(-1)\right) = 1(2) - k(2) + 4(0) = 2 - 2k \][/tex]
Set the determinant to zero for the matrix to be singular:
[tex]\[ 2 - 2k = 0 \implies k = 1 \][/tex]
However, the options provided do not match. This implies there's a missing investigation or misinterpretion.
None of the given options matches.
### Question 9
Given [tex]\( A = \left( \begin{array}{ccc} 1 & -6 & 0 \\ -1 & 2 & -3 \\ 0 & 0 & -1 \end{array} \right) \)[/tex], we calculate the characteristic polynomial:
[tex]\[ |A - \lambda I| = \left| \begin{array}{ccc} 1 - \lambda & -6 & 0 \\ -1 & 2 - \lambda & -3 \\ 0 & 0 & -1 - \lambda \end{array} \right| \][/tex]
Expanding the determinant:
[tex]\[ (1-\lambda) \left| \begin{array}{cc} 2-\lambda & -3 \\ 0 & -1-\lambda \end{array} \right| - (-6) \left| \begin{array}{cc} -1 & -3 \\ 0 & -1-\lambda \end{array} \right| \][/tex]
[tex]\[ (1-\lambda) [(2-\lambda)(-1-\lambda)] - (-6) (-1) = (1-\lambda) (\lambda^2 - \lambda - 2) - 6 = \lambda^3 - \lambda^2 - 2\lambda - \lambda^2 + \lambda + 2 -6 =0 = \lambda^3 - 2 \lambda^2 -1 \lambda -4 = (\lambda +1, \lambda +1,\lambda -2) \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{(c) \ \lambda_1=-1, \text{ a double eigenvalue and } \lambda_2 = - 4} ] ### Question 10 The \((A-\lambda_1 I) u = 0\) Given \(\lambda_1 = -1\): \[A-(\lambda_{1}I) = \left( \begin{array}{ccc} 2 & -6 & 0 \\ -1 & 3 & -3 \\ 0 & 0 & 0 \end{array} \right)\][/tex]
Row reduce to get:
[tex]\[ u \to (\alpha (3, 1 , 0), alpha \in R)\][/tex]
The corresponding eigenvevctor is 3,1,0
\boxed{ (Final answer alpha(c) 3,1,0) none of the answer matches }]
### Question 11
Given [tex]\(A(A-\lambda_2)X=0\)[/tex] where [tex]\(\lambda_2=4\)[/tex]
\[
A-\lambda_2(X)=x0
Nullifying the third row : for \lambda2 there are
(2, -1,0)
So:
\[ \boxed{(a) -(2,1,1);ivial function [}
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. IDNLearn.com provides the best answers to your questions. Thank you for visiting, and come back soon for more helpful information.