Experience the convenience of getting your questions answered at IDNLearn.com. Get accurate and comprehensive answers to your questions from our community of knowledgeable professionals.
Sagot :
To determine the extension produced in the wire and the energy stored in the extended wire, we will proceed with the following steps:
### Given Data:
- Length of the wire (L): [tex]\( 2.5 \)[/tex] m
- Area of cross-section (A): [tex]\( 1 \times 10^{-6} \ \text{m}^2 \)[/tex]
- Mass hanging on the wire (m): [tex]\( 16 \)[/tex] kg
- Acceleration due to gravity (g): [tex]\( 9.81 \ \text{m/s}^2 \)[/tex]
- Young's modulus (Y): [tex]\( 2 \times 10^{11} \ \text{N/m}^2 \)[/tex]
### Step-by-Step Solution:
1. Calculate the force applied by the mass:
The force ([tex]\( F \)[/tex]) applied by the mass can be determined using:
[tex]\[ F = m \times g \][/tex]
where [tex]\( m \)[/tex] is the mass and [tex]\( g \)[/tex] is the acceleration due to gravity.
Plugging in the values:
[tex]\[ F = 16 \ \text{kg} \times 9.81 \ \text{m/s}^2 \][/tex]
So, the force is:
[tex]\[ F = 156.96 \ \text{N} \][/tex]
2. Calculate the extension produced in the wire:
The extension ([tex]\( \Delta L \)[/tex]) can be determined using Hooke's law for materials in the elastic range:
[tex]\[ \Delta L = \frac{F \times L}{Y \times A} \][/tex]
where [tex]\( F \)[/tex] is the force, [tex]\( L \)[/tex] is the original length of the wire, [tex]\( Y \)[/tex] is Young's modulus, and [tex]\( A \)[/tex] is the cross-sectional area.
Plugging in the values:
[tex]\[ \Delta L = \frac{156.96 \ \text{N} \times 2.5 \ \text{m}}{2 \times 10^{11} \ \text{N/m}^2 \times 1 \times 10^{-6} \ \text{m}^2} \][/tex]
So, the extension produced is:
[tex]\[ \Delta L = 0.001962 \ \text{m} \][/tex]
3. Calculate the energy stored in the extended wire:
The energy stored ([tex]\( U \)[/tex]) in the wire can be determined using the formula for elastic potential energy:
[tex]\[ U = \frac{1}{2} \times F \times \Delta L \][/tex]
where [tex]\( F \)[/tex] is the force and [tex]\( \Delta L \)[/tex] is the extension.
Plugging in the values:
[tex]\[ U = \frac{1}{2} \times 156.96 \ \text{N} \times 0.001962 \ \text{m} \][/tex]
So, the energy stored is:
[tex]\[ U = 0.15397776 \ \text{J} \][/tex]
### Summary:
- The extension produced in the wire is [tex]\( 0.001962 \ \text{m} \)[/tex] or [tex]\( 1.962 \ \text{mm} \)[/tex].
- The energy stored in the extended wire is [tex]\( 0.15397776 \ \text{J} \)[/tex].
### Given Data:
- Length of the wire (L): [tex]\( 2.5 \)[/tex] m
- Area of cross-section (A): [tex]\( 1 \times 10^{-6} \ \text{m}^2 \)[/tex]
- Mass hanging on the wire (m): [tex]\( 16 \)[/tex] kg
- Acceleration due to gravity (g): [tex]\( 9.81 \ \text{m/s}^2 \)[/tex]
- Young's modulus (Y): [tex]\( 2 \times 10^{11} \ \text{N/m}^2 \)[/tex]
### Step-by-Step Solution:
1. Calculate the force applied by the mass:
The force ([tex]\( F \)[/tex]) applied by the mass can be determined using:
[tex]\[ F = m \times g \][/tex]
where [tex]\( m \)[/tex] is the mass and [tex]\( g \)[/tex] is the acceleration due to gravity.
Plugging in the values:
[tex]\[ F = 16 \ \text{kg} \times 9.81 \ \text{m/s}^2 \][/tex]
So, the force is:
[tex]\[ F = 156.96 \ \text{N} \][/tex]
2. Calculate the extension produced in the wire:
The extension ([tex]\( \Delta L \)[/tex]) can be determined using Hooke's law for materials in the elastic range:
[tex]\[ \Delta L = \frac{F \times L}{Y \times A} \][/tex]
where [tex]\( F \)[/tex] is the force, [tex]\( L \)[/tex] is the original length of the wire, [tex]\( Y \)[/tex] is Young's modulus, and [tex]\( A \)[/tex] is the cross-sectional area.
Plugging in the values:
[tex]\[ \Delta L = \frac{156.96 \ \text{N} \times 2.5 \ \text{m}}{2 \times 10^{11} \ \text{N/m}^2 \times 1 \times 10^{-6} \ \text{m}^2} \][/tex]
So, the extension produced is:
[tex]\[ \Delta L = 0.001962 \ \text{m} \][/tex]
3. Calculate the energy stored in the extended wire:
The energy stored ([tex]\( U \)[/tex]) in the wire can be determined using the formula for elastic potential energy:
[tex]\[ U = \frac{1}{2} \times F \times \Delta L \][/tex]
where [tex]\( F \)[/tex] is the force and [tex]\( \Delta L \)[/tex] is the extension.
Plugging in the values:
[tex]\[ U = \frac{1}{2} \times 156.96 \ \text{N} \times 0.001962 \ \text{m} \][/tex]
So, the energy stored is:
[tex]\[ U = 0.15397776 \ \text{J} \][/tex]
### Summary:
- The extension produced in the wire is [tex]\( 0.001962 \ \text{m} \)[/tex] or [tex]\( 1.962 \ \text{mm} \)[/tex].
- The energy stored in the extended wire is [tex]\( 0.15397776 \ \text{J} \)[/tex].
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your search for answers ends at IDNLearn.com. Thanks for visiting, and we look forward to helping you again soon.