Connect with a global community of knowledgeable individuals on IDNLearn.com. Our experts provide accurate and detailed responses to help you navigate any topic or issue with confidence.
Sagot :
To determine the extension produced in the wire and the energy stored in the extended wire, we will proceed with the following steps:
### Given Data:
- Length of the wire (L): [tex]\( 2.5 \)[/tex] m
- Area of cross-section (A): [tex]\( 1 \times 10^{-6} \ \text{m}^2 \)[/tex]
- Mass hanging on the wire (m): [tex]\( 16 \)[/tex] kg
- Acceleration due to gravity (g): [tex]\( 9.81 \ \text{m/s}^2 \)[/tex]
- Young's modulus (Y): [tex]\( 2 \times 10^{11} \ \text{N/m}^2 \)[/tex]
### Step-by-Step Solution:
1. Calculate the force applied by the mass:
The force ([tex]\( F \)[/tex]) applied by the mass can be determined using:
[tex]\[ F = m \times g \][/tex]
where [tex]\( m \)[/tex] is the mass and [tex]\( g \)[/tex] is the acceleration due to gravity.
Plugging in the values:
[tex]\[ F = 16 \ \text{kg} \times 9.81 \ \text{m/s}^2 \][/tex]
So, the force is:
[tex]\[ F = 156.96 \ \text{N} \][/tex]
2. Calculate the extension produced in the wire:
The extension ([tex]\( \Delta L \)[/tex]) can be determined using Hooke's law for materials in the elastic range:
[tex]\[ \Delta L = \frac{F \times L}{Y \times A} \][/tex]
where [tex]\( F \)[/tex] is the force, [tex]\( L \)[/tex] is the original length of the wire, [tex]\( Y \)[/tex] is Young's modulus, and [tex]\( A \)[/tex] is the cross-sectional area.
Plugging in the values:
[tex]\[ \Delta L = \frac{156.96 \ \text{N} \times 2.5 \ \text{m}}{2 \times 10^{11} \ \text{N/m}^2 \times 1 \times 10^{-6} \ \text{m}^2} \][/tex]
So, the extension produced is:
[tex]\[ \Delta L = 0.001962 \ \text{m} \][/tex]
3. Calculate the energy stored in the extended wire:
The energy stored ([tex]\( U \)[/tex]) in the wire can be determined using the formula for elastic potential energy:
[tex]\[ U = \frac{1}{2} \times F \times \Delta L \][/tex]
where [tex]\( F \)[/tex] is the force and [tex]\( \Delta L \)[/tex] is the extension.
Plugging in the values:
[tex]\[ U = \frac{1}{2} \times 156.96 \ \text{N} \times 0.001962 \ \text{m} \][/tex]
So, the energy stored is:
[tex]\[ U = 0.15397776 \ \text{J} \][/tex]
### Summary:
- The extension produced in the wire is [tex]\( 0.001962 \ \text{m} \)[/tex] or [tex]\( 1.962 \ \text{mm} \)[/tex].
- The energy stored in the extended wire is [tex]\( 0.15397776 \ \text{J} \)[/tex].
### Given Data:
- Length of the wire (L): [tex]\( 2.5 \)[/tex] m
- Area of cross-section (A): [tex]\( 1 \times 10^{-6} \ \text{m}^2 \)[/tex]
- Mass hanging on the wire (m): [tex]\( 16 \)[/tex] kg
- Acceleration due to gravity (g): [tex]\( 9.81 \ \text{m/s}^2 \)[/tex]
- Young's modulus (Y): [tex]\( 2 \times 10^{11} \ \text{N/m}^2 \)[/tex]
### Step-by-Step Solution:
1. Calculate the force applied by the mass:
The force ([tex]\( F \)[/tex]) applied by the mass can be determined using:
[tex]\[ F = m \times g \][/tex]
where [tex]\( m \)[/tex] is the mass and [tex]\( g \)[/tex] is the acceleration due to gravity.
Plugging in the values:
[tex]\[ F = 16 \ \text{kg} \times 9.81 \ \text{m/s}^2 \][/tex]
So, the force is:
[tex]\[ F = 156.96 \ \text{N} \][/tex]
2. Calculate the extension produced in the wire:
The extension ([tex]\( \Delta L \)[/tex]) can be determined using Hooke's law for materials in the elastic range:
[tex]\[ \Delta L = \frac{F \times L}{Y \times A} \][/tex]
where [tex]\( F \)[/tex] is the force, [tex]\( L \)[/tex] is the original length of the wire, [tex]\( Y \)[/tex] is Young's modulus, and [tex]\( A \)[/tex] is the cross-sectional area.
Plugging in the values:
[tex]\[ \Delta L = \frac{156.96 \ \text{N} \times 2.5 \ \text{m}}{2 \times 10^{11} \ \text{N/m}^2 \times 1 \times 10^{-6} \ \text{m}^2} \][/tex]
So, the extension produced is:
[tex]\[ \Delta L = 0.001962 \ \text{m} \][/tex]
3. Calculate the energy stored in the extended wire:
The energy stored ([tex]\( U \)[/tex]) in the wire can be determined using the formula for elastic potential energy:
[tex]\[ U = \frac{1}{2} \times F \times \Delta L \][/tex]
where [tex]\( F \)[/tex] is the force and [tex]\( \Delta L \)[/tex] is the extension.
Plugging in the values:
[tex]\[ U = \frac{1}{2} \times 156.96 \ \text{N} \times 0.001962 \ \text{m} \][/tex]
So, the energy stored is:
[tex]\[ U = 0.15397776 \ \text{J} \][/tex]
### Summary:
- The extension produced in the wire is [tex]\( 0.001962 \ \text{m} \)[/tex] or [tex]\( 1.962 \ \text{mm} \)[/tex].
- The energy stored in the extended wire is [tex]\( 0.15397776 \ \text{J} \)[/tex].
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Trust IDNLearn.com for all your queries. We appreciate your visit and hope to assist you again soon.