IDNLearn.com provides a comprehensive solution for all your question and answer needs. Ask any question and get a thorough, accurate answer from our community of experienced professionals.
Sagot :
Let's tackle the problem step-by-step.
### Part a: Solve the equation [tex]\(2 \cos^2(\theta) = 3 \sin(\theta)\)[/tex] for [tex]\(0^\circ \leq \theta \leq 360^\circ\)[/tex].
First, we'll use a trigonometric identity to simplify the equation. Recall that [tex]\(\cos^2(\theta) = 1 - \sin^2(\theta)\)[/tex]. We can rewrite the given equation using this identity:
[tex]\[ 2 \cos^2(\theta) = 2 (1 - \sin^2(\theta)) \][/tex]
So, the original equation becomes:
[tex]\[ 2 (1 - \sin^2(\theta)) = 3 \sin(\theta) \][/tex]
Expand and rearrange the equation:
[tex]\[ 2 - 2 \sin^2(\theta) = 3 \sin(\theta) \][/tex]
Move all terms to one side of the equation to set it to zero:
[tex]\[ -2 \sin^2(\theta) - 3 \sin(\theta) + 2 = 0 \][/tex]
Let's change the variable [tex]\(\sin(\theta) = x\)[/tex]:
[tex]\[ -2x^2 - 3x + 2 = 0 \][/tex]
This is a quadratic equation in the form [tex]\(ax^2 + bx + c = 0\)[/tex]. We can solve it using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
Here, [tex]\(a = -2\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = 2\)[/tex].
[tex]\[ x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(-2)(2)}}{2(-2)} \][/tex]
[tex]\[ x = \frac{3 \pm \sqrt{9 + 16}}{-4} \][/tex]
[tex]\[ x = \frac{3 \pm \sqrt{25}}{-4} \][/tex]
[tex]\[ x = \frac{3 \pm 5}{-4} \][/tex]
This gives us two solutions:
[tex]\[ x = \frac{3 + 5}{-4} = \frac{8}{-4} = -2 \][/tex]
[tex]\[ x = \frac{3 - 5}{-4} = \frac{-2}{-4} = \frac{1}{2} \][/tex]
We discard [tex]\(x = -2\)[/tex] because sine values range between -1 and 1. So, we have:
[tex]\[ \sin(\theta) = \frac{1}{2} \][/tex]
Now we find [tex]\(\theta\)[/tex] such that [tex]\(\sin(\theta) = \frac{1}{2}\)[/tex] within the given interval. The angles which satisfy this condition are:
[tex]\[ \theta = 30^\circ, 150^\circ \][/tex]
Thus, the solutions for part a) are:
[tex]\[ \theta = 30^\circ, 150^\circ \][/tex]
### Part b: Smallest positive solution of [tex]\(2 \cos^2(n\theta) = 3 \sin(n\theta)\)[/tex] given as [tex]\(10^\circ\)[/tex]. Find [tex]\(n\)[/tex] and the largest solution.
Given the smallest positive solution is [tex]\(10^\circ\)[/tex]:
[tex]\[ n\theta = 10^\circ \][/tex]
[tex]\[ \theta = \frac{10^\circ}{n} \][/tex]
To find [tex]\(n\)[/tex]:
Since the smallest positive solution is [tex]\(10^\circ\)[/tex], we have:
[tex]\[ \theta = 10^\circ \text{ implies } n \theta = n \cdot 10^\circ = 10^\circ \times 1 \][/tex]
[tex]\[ n = 1 \][/tex]
For the largest solution, since [tex]\(n = 1\)[/tex]:
The largest solution for [tex]\(n\theta\)[/tex] within the interval [tex]\(0^\circ \leq \theta \leq 360^\circ\)[/tex] will be [tex]\(360^\circ\)[/tex] when [tex]\(\theta = 360^\circ\)[/tex].
Therefore, the value of [tex]\(n\)[/tex] is:
[tex]\[ n = 1 \][/tex]
And the largest solution in the interval is:
[tex]\[ \theta = 360^\circ \][/tex]
Summarizing, for part b):
- [tex]\(n = 1\)[/tex]
- Largest solution is [tex]\(360^\circ\)[/tex]
Thus, the detailed steps yield:
1. Solutions for part a): [tex]\(\theta = 30^\circ, 150^\circ\)[/tex]
2. For part b): [tex]\( n = 1 \)[/tex] and the largest solution is [tex]\(360^\circ\)[/tex].
### Part a: Solve the equation [tex]\(2 \cos^2(\theta) = 3 \sin(\theta)\)[/tex] for [tex]\(0^\circ \leq \theta \leq 360^\circ\)[/tex].
First, we'll use a trigonometric identity to simplify the equation. Recall that [tex]\(\cos^2(\theta) = 1 - \sin^2(\theta)\)[/tex]. We can rewrite the given equation using this identity:
[tex]\[ 2 \cos^2(\theta) = 2 (1 - \sin^2(\theta)) \][/tex]
So, the original equation becomes:
[tex]\[ 2 (1 - \sin^2(\theta)) = 3 \sin(\theta) \][/tex]
Expand and rearrange the equation:
[tex]\[ 2 - 2 \sin^2(\theta) = 3 \sin(\theta) \][/tex]
Move all terms to one side of the equation to set it to zero:
[tex]\[ -2 \sin^2(\theta) - 3 \sin(\theta) + 2 = 0 \][/tex]
Let's change the variable [tex]\(\sin(\theta) = x\)[/tex]:
[tex]\[ -2x^2 - 3x + 2 = 0 \][/tex]
This is a quadratic equation in the form [tex]\(ax^2 + bx + c = 0\)[/tex]. We can solve it using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
Here, [tex]\(a = -2\)[/tex], [tex]\(b = -3\)[/tex], and [tex]\(c = 2\)[/tex].
[tex]\[ x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(-2)(2)}}{2(-2)} \][/tex]
[tex]\[ x = \frac{3 \pm \sqrt{9 + 16}}{-4} \][/tex]
[tex]\[ x = \frac{3 \pm \sqrt{25}}{-4} \][/tex]
[tex]\[ x = \frac{3 \pm 5}{-4} \][/tex]
This gives us two solutions:
[tex]\[ x = \frac{3 + 5}{-4} = \frac{8}{-4} = -2 \][/tex]
[tex]\[ x = \frac{3 - 5}{-4} = \frac{-2}{-4} = \frac{1}{2} \][/tex]
We discard [tex]\(x = -2\)[/tex] because sine values range between -1 and 1. So, we have:
[tex]\[ \sin(\theta) = \frac{1}{2} \][/tex]
Now we find [tex]\(\theta\)[/tex] such that [tex]\(\sin(\theta) = \frac{1}{2}\)[/tex] within the given interval. The angles which satisfy this condition are:
[tex]\[ \theta = 30^\circ, 150^\circ \][/tex]
Thus, the solutions for part a) are:
[tex]\[ \theta = 30^\circ, 150^\circ \][/tex]
### Part b: Smallest positive solution of [tex]\(2 \cos^2(n\theta) = 3 \sin(n\theta)\)[/tex] given as [tex]\(10^\circ\)[/tex]. Find [tex]\(n\)[/tex] and the largest solution.
Given the smallest positive solution is [tex]\(10^\circ\)[/tex]:
[tex]\[ n\theta = 10^\circ \][/tex]
[tex]\[ \theta = \frac{10^\circ}{n} \][/tex]
To find [tex]\(n\)[/tex]:
Since the smallest positive solution is [tex]\(10^\circ\)[/tex], we have:
[tex]\[ \theta = 10^\circ \text{ implies } n \theta = n \cdot 10^\circ = 10^\circ \times 1 \][/tex]
[tex]\[ n = 1 \][/tex]
For the largest solution, since [tex]\(n = 1\)[/tex]:
The largest solution for [tex]\(n\theta\)[/tex] within the interval [tex]\(0^\circ \leq \theta \leq 360^\circ\)[/tex] will be [tex]\(360^\circ\)[/tex] when [tex]\(\theta = 360^\circ\)[/tex].
Therefore, the value of [tex]\(n\)[/tex] is:
[tex]\[ n = 1 \][/tex]
And the largest solution in the interval is:
[tex]\[ \theta = 360^\circ \][/tex]
Summarizing, for part b):
- [tex]\(n = 1\)[/tex]
- Largest solution is [tex]\(360^\circ\)[/tex]
Thus, the detailed steps yield:
1. Solutions for part a): [tex]\(\theta = 30^\circ, 150^\circ\)[/tex]
2. For part b): [tex]\( n = 1 \)[/tex] and the largest solution is [tex]\(360^\circ\)[/tex].
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. IDNLearn.com is committed to providing the best answers. Thank you for visiting, and see you next time for more solutions.