Join IDNLearn.com today and start getting the answers you've been searching for. Our platform is designed to provide trustworthy and thorough answers to any questions you may have.
Sagot :
Sure! Let's find the derivative of [tex]\( y = \ln (\sin (x)) \)[/tex] with respect to [tex]\( x \)[/tex].
1. Identify the function and its inner component:
[tex]\[ y = \ln (\sin (x)) \][/tex]
Here, [tex]\( \sin(x) \)[/tex] is a composite part of the natural logarithm function [tex]\( \ln \)[/tex].
2. Apply the chain rule:
The chain rule is used when differentiating a composite function. It states that if [tex]\( y = f(g(x)) \)[/tex], then:
[tex]\[ \frac{dy}{dx} = f'(g(x)) \cdot g'(x) \][/tex]
In our case, we have [tex]\( f(u) = \ln(u) \)[/tex] and [tex]\( g(x) = \sin(x) \)[/tex].
3. Differentiate the outer function [tex]\( f(u) = \ln(u) \)[/tex]:
The derivative of [tex]\( \ln(u) \)[/tex] with respect to [tex]\( u \)[/tex] is [tex]\( \frac{1}{u} \)[/tex]:
[tex]\[ \frac{d}{du} (\ln(u)) = \frac{1}{u} \][/tex]
4. Substitute back the inner function [tex]\( u = \sin(x) \)[/tex]:
[tex]\[ \frac{d}{dx} (\ln(\sin(x))) = \frac{1}{\sin(x)} \][/tex]
5. Differentiate the inner function [tex]\( g(x) = \sin(x) \)[/tex]:
The derivative of [tex]\( \sin(x) \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( \cos(x) \)[/tex]:
[tex]\[ g'(x) = \frac{d}{dx} (\sin(x)) = \cos(x) \][/tex]
6. Combine the results using the chain rule:
[tex]\[ \frac{d}{dx} (\ln(\sin(x))) = \frac{1}{\sin(x)} \cdot \cos(x) \][/tex]
7. Simplify the expression:
[tex]\[ \frac{dy}{dx} = \frac{\cos(x)}{\sin(x)} \][/tex]
So, the derivative of [tex]\( y = \ln (\sin (x)) \)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ \frac{dy}{dx} = \frac{\cos(x)}{\sin(x)} \][/tex]
This final result can also be expressed as [tex]\( \cot(x) \)[/tex], but we'll leave it in the fractional form as specified.
1. Identify the function and its inner component:
[tex]\[ y = \ln (\sin (x)) \][/tex]
Here, [tex]\( \sin(x) \)[/tex] is a composite part of the natural logarithm function [tex]\( \ln \)[/tex].
2. Apply the chain rule:
The chain rule is used when differentiating a composite function. It states that if [tex]\( y = f(g(x)) \)[/tex], then:
[tex]\[ \frac{dy}{dx} = f'(g(x)) \cdot g'(x) \][/tex]
In our case, we have [tex]\( f(u) = \ln(u) \)[/tex] and [tex]\( g(x) = \sin(x) \)[/tex].
3. Differentiate the outer function [tex]\( f(u) = \ln(u) \)[/tex]:
The derivative of [tex]\( \ln(u) \)[/tex] with respect to [tex]\( u \)[/tex] is [tex]\( \frac{1}{u} \)[/tex]:
[tex]\[ \frac{d}{du} (\ln(u)) = \frac{1}{u} \][/tex]
4. Substitute back the inner function [tex]\( u = \sin(x) \)[/tex]:
[tex]\[ \frac{d}{dx} (\ln(\sin(x))) = \frac{1}{\sin(x)} \][/tex]
5. Differentiate the inner function [tex]\( g(x) = \sin(x) \)[/tex]:
The derivative of [tex]\( \sin(x) \)[/tex] with respect to [tex]\( x \)[/tex] is [tex]\( \cos(x) \)[/tex]:
[tex]\[ g'(x) = \frac{d}{dx} (\sin(x)) = \cos(x) \][/tex]
6. Combine the results using the chain rule:
[tex]\[ \frac{d}{dx} (\ln(\sin(x))) = \frac{1}{\sin(x)} \cdot \cos(x) \][/tex]
7. Simplify the expression:
[tex]\[ \frac{dy}{dx} = \frac{\cos(x)}{\sin(x)} \][/tex]
So, the derivative of [tex]\( y = \ln (\sin (x)) \)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ \frac{dy}{dx} = \frac{\cos(x)}{\sin(x)} \][/tex]
This final result can also be expressed as [tex]\( \cot(x) \)[/tex], but we'll leave it in the fractional form as specified.
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Thank you for choosing IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more solutions.