Explore a diverse range of topics and get answers from knowledgeable individuals on IDNLearn.com. Our community provides accurate and timely answers to help you understand and solve any issue.

Calculate the number of molecules in a breath of air whose volume is 2.29 L at body temperature, [tex]$98.6^{\circ} F$[/tex], and at a pressure of 746 torr.

Input numbers in scientific notation like this: [tex]$6.022 \times 10^{23}$[/tex] would be [tex]$6.022 e +23$[/tex].

[tex]$\square$[/tex]


Sagot :

To calculate the number of molecules in a breath of air, we'll follow these steps:

1. Convert temperature from Fahrenheit to Kelvin:
- The formula to convert Fahrenheit to Kelvin is:
[tex]\[ K = (F - 32) \times \frac{5}{9} + 273.15 \][/tex]
- Given the body temperature [tex]\(98.6^{\circ} F\)[/tex]:
[tex]\[ K = (98.6 - 32) \times \frac{5}{9} + 273.15 \][/tex]
Thus, the temperature in Kelvin is [tex]\(310.15 \, K\)[/tex].

2. Convert pressure from torr to atmospheres:
- The conversion factor is:
[tex]\[ 1 \, atm = 760 \, torr \][/tex]
- Given the pressure [tex]\(746 \, torr\)[/tex]:
[tex]\[ \text{Pressure in atmospheres} = \frac{746}{760} \][/tex]
Therefore, the pressure is approximately [tex]\(0.981578947 \, atm\)[/tex].

3. Use the ideal gas law to find the number of moles (n):
- The ideal gas law is given by [tex]\( PV = nRT \)[/tex], where:
- [tex]\( P \)[/tex] is the pressure in atmospheres ([tex]\(0.981578947 \, atm\)[/tex]),
- [tex]\( V \)[/tex] is the volume in liters ([tex]\(2.29 \, L\)[/tex]),
- [tex]\( R \)[/tex] is the ideal gas constant ([tex]\(0.0821 \, L \cdot atm / (K \cdot mol)\)[/tex]),
- [tex]\( T \)[/tex] is the temperature in Kelvin ([tex]\(310.15 \, K\)[/tex]).
- Rearranging the ideal gas law to solve for [tex]\( n \)[/tex] (number of moles):
[tex]\[ n = \frac{PV}{RT} \][/tex]
Plugging in the values:
[tex]\[ n = \frac{0.981578947 \times 2.29}{0.0821 \times 310.15} \][/tex]
Hence, the number of moles is [tex]\(0.088276636 \, mol\)[/tex].

4. Calculate the number of molecules using Avogadro's number:
- Avogadro's number ([tex]\(6.022 \times 10^{23}\)[/tex]) indicates the number of molecules per mole.
- The number of molecules ([tex]\(N\)[/tex]) is:
[tex]\[ N = n \times \text{Avogadro's number} \][/tex]
Using the calculated number of moles:
[tex]\[ N = 0.088276636 \times 6.022 \times 10^{23} \][/tex]
Thus, the number of molecules is approximately [tex]\(5.316 \times 10^{22}\)[/tex].

Therefore, the number of molecules in a breath of air with the given conditions is:
[tex]\[ 5.316 \times 10^{22} \, \text{molecules} \][/tex]