IDNLearn.com makes it easy to find accurate answers to your specific questions. Discover comprehensive answers to your questions from our community of knowledgeable experts.
Sagot :
To find the exact value of [tex]\(\tan \frac{7\pi}{12}\)[/tex], we need to use the half-angle formula for tangent. Specifically, we will use the formula:
[tex]\[ \tan \left( \frac{\theta}{2} \right) = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \][/tex]
First, we express [tex]\(\frac{7\pi}{12}\)[/tex] as a half-angle. Notice that:
[tex]\[ \frac{7\pi}{12} = \frac{7\pi}{6} \times \frac{1}{2} \][/tex]
Thus, [tex]\(\theta = \frac{7\pi}{6}\)[/tex], which means we are dealing with:
[tex]\[ \tan \left( \frac{\frac{7\pi}{6}}{2} \right) = \tan \left( \frac{7\pi}{12} \right) \][/tex]
Using the [tex]\(\tan\)[/tex] half-angle formula, we have:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{\frac{1 - \cos \left( \frac{7\pi}{6} \right)}{1 + \cos \left( \frac{7\pi}{6} \right)}} \][/tex]
Next, we need to find [tex]\(\cos \frac{7\pi}{6}\)[/tex]. Note that [tex]\(\frac{7\pi}{6}\)[/tex] is in the third quadrant where cosine is negative. We know that:
[tex]\[ \cos \left( \frac{7\pi}{6} \right) = \cos \left( \pi + \frac{\pi}{6} \right) = -\cos \left( \frac{\pi}{6} \right) \][/tex]
Since [tex]\(\cos \left( \frac{\pi}{6} \right) = \frac{\sqrt{3}}{2}\)[/tex], we have:
[tex]\[ \cos \left( \frac{7\pi}{6} \right) = -\frac{\sqrt{3}}{2} \][/tex]
Substitute this back into the half-angle formula:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{\frac{1 - \left( -\frac{\sqrt{3}}{2} \right)}{1 + \left( -\frac{\sqrt{3}}{2} \right)}} = \pm \sqrt{\frac{1 + \frac{\sqrt{3}}{2}}{1 - \frac{\sqrt{3}}{2}}} \][/tex]
Now, simplify the expression inside the square root:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{\frac{1 + \frac{\sqrt{3}}{2}}{1 - \frac{\sqrt{3}}{2}}} = \pm \sqrt{\frac{\frac{2 + \sqrt{3}}{2}}{\frac{2 - \sqrt{3}}{2}}} = \pm \sqrt{\frac{2 + \sqrt{3}}{2 - \sqrt{3}}} \][/tex]
To rationalize the denominator, multiply by the conjugate of the denominator:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{\frac{(2 + \sqrt{3})(2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})}} = \pm \sqrt{\frac{(2 + \sqrt{3})^2}{4 - 3}} \][/tex]
Simplify the numerator and the denominator:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{\frac{4 + 4\sqrt{3} + 3}{1}} = \pm \sqrt{7 + 4\sqrt{3}} \][/tex]
Therefore, we find that:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{7 + 4\sqrt{3}} \][/tex]
In the relevant equation [tex]\(\tan \frac{7\pi}{12} = -\sqrt{\frac{[?] + \sqrt{\square}}{\square - \sqrt{\square}}}\)[/tex], the exact value corresponds to:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = -\sqrt{\frac{7 + 4\sqrt{3}}{1}} \][/tex]
From this, we can match the components:
- The unknown value [tex]\([?]\)[/tex] is [tex]\(7\)[/tex]
- Both occurrences of [tex]\(\sqrt{\square}\)[/tex] are [tex]\(\sqrt{3}\)[/tex]
Thus, the exact value is:
[tex]\[ -\sqrt{\frac{7 + 4\sqrt{3}}{1}} \][/tex]
[tex]\[ \tan \left( \frac{\theta}{2} \right) = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \][/tex]
First, we express [tex]\(\frac{7\pi}{12}\)[/tex] as a half-angle. Notice that:
[tex]\[ \frac{7\pi}{12} = \frac{7\pi}{6} \times \frac{1}{2} \][/tex]
Thus, [tex]\(\theta = \frac{7\pi}{6}\)[/tex], which means we are dealing with:
[tex]\[ \tan \left( \frac{\frac{7\pi}{6}}{2} \right) = \tan \left( \frac{7\pi}{12} \right) \][/tex]
Using the [tex]\(\tan\)[/tex] half-angle formula, we have:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{\frac{1 - \cos \left( \frac{7\pi}{6} \right)}{1 + \cos \left( \frac{7\pi}{6} \right)}} \][/tex]
Next, we need to find [tex]\(\cos \frac{7\pi}{6}\)[/tex]. Note that [tex]\(\frac{7\pi}{6}\)[/tex] is in the third quadrant where cosine is negative. We know that:
[tex]\[ \cos \left( \frac{7\pi}{6} \right) = \cos \left( \pi + \frac{\pi}{6} \right) = -\cos \left( \frac{\pi}{6} \right) \][/tex]
Since [tex]\(\cos \left( \frac{\pi}{6} \right) = \frac{\sqrt{3}}{2}\)[/tex], we have:
[tex]\[ \cos \left( \frac{7\pi}{6} \right) = -\frac{\sqrt{3}}{2} \][/tex]
Substitute this back into the half-angle formula:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{\frac{1 - \left( -\frac{\sqrt{3}}{2} \right)}{1 + \left( -\frac{\sqrt{3}}{2} \right)}} = \pm \sqrt{\frac{1 + \frac{\sqrt{3}}{2}}{1 - \frac{\sqrt{3}}{2}}} \][/tex]
Now, simplify the expression inside the square root:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{\frac{1 + \frac{\sqrt{3}}{2}}{1 - \frac{\sqrt{3}}{2}}} = \pm \sqrt{\frac{\frac{2 + \sqrt{3}}{2}}{\frac{2 - \sqrt{3}}{2}}} = \pm \sqrt{\frac{2 + \sqrt{3}}{2 - \sqrt{3}}} \][/tex]
To rationalize the denominator, multiply by the conjugate of the denominator:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{\frac{(2 + \sqrt{3})(2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})}} = \pm \sqrt{\frac{(2 + \sqrt{3})^2}{4 - 3}} \][/tex]
Simplify the numerator and the denominator:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{\frac{4 + 4\sqrt{3} + 3}{1}} = \pm \sqrt{7 + 4\sqrt{3}} \][/tex]
Therefore, we find that:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{7 + 4\sqrt{3}} \][/tex]
In the relevant equation [tex]\(\tan \frac{7\pi}{12} = -\sqrt{\frac{[?] + \sqrt{\square}}{\square - \sqrt{\square}}}\)[/tex], the exact value corresponds to:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = -\sqrt{\frac{7 + 4\sqrt{3}}{1}} \][/tex]
From this, we can match the components:
- The unknown value [tex]\([?]\)[/tex] is [tex]\(7\)[/tex]
- Both occurrences of [tex]\(\sqrt{\square}\)[/tex] are [tex]\(\sqrt{3}\)[/tex]
Thus, the exact value is:
[tex]\[ -\sqrt{\frac{7 + 4\sqrt{3}}{1}} \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. Discover insightful answers at IDNLearn.com. We appreciate your visit and look forward to assisting you again.