Get the answers you've been searching for with IDNLearn.com. Our experts provide timely, comprehensive responses to ensure you have the information you need.
Sagot :
To find the exact value of [tex]\(\tan \frac{7\pi}{12}\)[/tex], we need to use the half-angle formula for tangent. Specifically, we will use the formula:
[tex]\[ \tan \left( \frac{\theta}{2} \right) = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \][/tex]
First, we express [tex]\(\frac{7\pi}{12}\)[/tex] as a half-angle. Notice that:
[tex]\[ \frac{7\pi}{12} = \frac{7\pi}{6} \times \frac{1}{2} \][/tex]
Thus, [tex]\(\theta = \frac{7\pi}{6}\)[/tex], which means we are dealing with:
[tex]\[ \tan \left( \frac{\frac{7\pi}{6}}{2} \right) = \tan \left( \frac{7\pi}{12} \right) \][/tex]
Using the [tex]\(\tan\)[/tex] half-angle formula, we have:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{\frac{1 - \cos \left( \frac{7\pi}{6} \right)}{1 + \cos \left( \frac{7\pi}{6} \right)}} \][/tex]
Next, we need to find [tex]\(\cos \frac{7\pi}{6}\)[/tex]. Note that [tex]\(\frac{7\pi}{6}\)[/tex] is in the third quadrant where cosine is negative. We know that:
[tex]\[ \cos \left( \frac{7\pi}{6} \right) = \cos \left( \pi + \frac{\pi}{6} \right) = -\cos \left( \frac{\pi}{6} \right) \][/tex]
Since [tex]\(\cos \left( \frac{\pi}{6} \right) = \frac{\sqrt{3}}{2}\)[/tex], we have:
[tex]\[ \cos \left( \frac{7\pi}{6} \right) = -\frac{\sqrt{3}}{2} \][/tex]
Substitute this back into the half-angle formula:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{\frac{1 - \left( -\frac{\sqrt{3}}{2} \right)}{1 + \left( -\frac{\sqrt{3}}{2} \right)}} = \pm \sqrt{\frac{1 + \frac{\sqrt{3}}{2}}{1 - \frac{\sqrt{3}}{2}}} \][/tex]
Now, simplify the expression inside the square root:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{\frac{1 + \frac{\sqrt{3}}{2}}{1 - \frac{\sqrt{3}}{2}}} = \pm \sqrt{\frac{\frac{2 + \sqrt{3}}{2}}{\frac{2 - \sqrt{3}}{2}}} = \pm \sqrt{\frac{2 + \sqrt{3}}{2 - \sqrt{3}}} \][/tex]
To rationalize the denominator, multiply by the conjugate of the denominator:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{\frac{(2 + \sqrt{3})(2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})}} = \pm \sqrt{\frac{(2 + \sqrt{3})^2}{4 - 3}} \][/tex]
Simplify the numerator and the denominator:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{\frac{4 + 4\sqrt{3} + 3}{1}} = \pm \sqrt{7 + 4\sqrt{3}} \][/tex]
Therefore, we find that:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{7 + 4\sqrt{3}} \][/tex]
In the relevant equation [tex]\(\tan \frac{7\pi}{12} = -\sqrt{\frac{[?] + \sqrt{\square}}{\square - \sqrt{\square}}}\)[/tex], the exact value corresponds to:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = -\sqrt{\frac{7 + 4\sqrt{3}}{1}} \][/tex]
From this, we can match the components:
- The unknown value [tex]\([?]\)[/tex] is [tex]\(7\)[/tex]
- Both occurrences of [tex]\(\sqrt{\square}\)[/tex] are [tex]\(\sqrt{3}\)[/tex]
Thus, the exact value is:
[tex]\[ -\sqrt{\frac{7 + 4\sqrt{3}}{1}} \][/tex]
[tex]\[ \tan \left( \frac{\theta}{2} \right) = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \][/tex]
First, we express [tex]\(\frac{7\pi}{12}\)[/tex] as a half-angle. Notice that:
[tex]\[ \frac{7\pi}{12} = \frac{7\pi}{6} \times \frac{1}{2} \][/tex]
Thus, [tex]\(\theta = \frac{7\pi}{6}\)[/tex], which means we are dealing with:
[tex]\[ \tan \left( \frac{\frac{7\pi}{6}}{2} \right) = \tan \left( \frac{7\pi}{12} \right) \][/tex]
Using the [tex]\(\tan\)[/tex] half-angle formula, we have:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{\frac{1 - \cos \left( \frac{7\pi}{6} \right)}{1 + \cos \left( \frac{7\pi}{6} \right)}} \][/tex]
Next, we need to find [tex]\(\cos \frac{7\pi}{6}\)[/tex]. Note that [tex]\(\frac{7\pi}{6}\)[/tex] is in the third quadrant where cosine is negative. We know that:
[tex]\[ \cos \left( \frac{7\pi}{6} \right) = \cos \left( \pi + \frac{\pi}{6} \right) = -\cos \left( \frac{\pi}{6} \right) \][/tex]
Since [tex]\(\cos \left( \frac{\pi}{6} \right) = \frac{\sqrt{3}}{2}\)[/tex], we have:
[tex]\[ \cos \left( \frac{7\pi}{6} \right) = -\frac{\sqrt{3}}{2} \][/tex]
Substitute this back into the half-angle formula:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{\frac{1 - \left( -\frac{\sqrt{3}}{2} \right)}{1 + \left( -\frac{\sqrt{3}}{2} \right)}} = \pm \sqrt{\frac{1 + \frac{\sqrt{3}}{2}}{1 - \frac{\sqrt{3}}{2}}} \][/tex]
Now, simplify the expression inside the square root:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{\frac{1 + \frac{\sqrt{3}}{2}}{1 - \frac{\sqrt{3}}{2}}} = \pm \sqrt{\frac{\frac{2 + \sqrt{3}}{2}}{\frac{2 - \sqrt{3}}{2}}} = \pm \sqrt{\frac{2 + \sqrt{3}}{2 - \sqrt{3}}} \][/tex]
To rationalize the denominator, multiply by the conjugate of the denominator:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{\frac{(2 + \sqrt{3})(2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})}} = \pm \sqrt{\frac{(2 + \sqrt{3})^2}{4 - 3}} \][/tex]
Simplify the numerator and the denominator:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{\frac{4 + 4\sqrt{3} + 3}{1}} = \pm \sqrt{7 + 4\sqrt{3}} \][/tex]
Therefore, we find that:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \pm \sqrt{7 + 4\sqrt{3}} \][/tex]
In the relevant equation [tex]\(\tan \frac{7\pi}{12} = -\sqrt{\frac{[?] + \sqrt{\square}}{\square - \sqrt{\square}}}\)[/tex], the exact value corresponds to:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = -\sqrt{\frac{7 + 4\sqrt{3}}{1}} \][/tex]
From this, we can match the components:
- The unknown value [tex]\([?]\)[/tex] is [tex]\(7\)[/tex]
- Both occurrences of [tex]\(\sqrt{\square}\)[/tex] are [tex]\(\sqrt{3}\)[/tex]
Thus, the exact value is:
[tex]\[ -\sqrt{\frac{7 + 4\sqrt{3}}{1}} \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.