IDNLearn.com is designed to help you find reliable answers quickly and easily. Join our platform to receive prompt and accurate responses from experienced professionals in various fields.
Sagot :
Sure, let's analyze the given data step-by-step to understand how we arrived at the final result.
Given data:
[tex]\[ \begin{array}{l|rrrrrrr} x & 57 & 53 & 59 & 61 & 53 & 56 & 60 \\ \hline y & 156 & 164 & 163 & 177 & 159 & 175 & 151 \end{array} \][/tex]
Step 1: Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
The mean of [tex]\( x \)[/tex]:
[tex]\[ \bar{x} = \frac{\sum_{i=1}^n x_i}{n} = \frac{57 + 53 + 59 + 61 + 53 + 56 + 60}{7} = 57.0 \][/tex]
The mean of [tex]\( y \)[/tex]:
[tex]\[ \bar{y} = \frac{\sum_{i=1}^n y_i}{n} = \frac{156 + 164 + 163 + 177 + 159 + 175 + 151}{7} \approx 163.57 \][/tex]
Step 2: Calculate the covariance of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
The covariance formula is:
[tex]\[ \text{cov}(x, y) = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{n-1} \][/tex]
After calculating, we find:
[tex]\[ \text{cov}(x, y) \approx 3.33 \][/tex]
Step 3: Calculate the standard deviations of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
The standard deviation of [tex]\( x \)[/tex]:
[tex]\[ \sigma_x = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}} \approx 3.21 \][/tex]
The standard deviation of [tex]\( y \)[/tex]:
[tex]\[ \sigma_y = \sqrt{\frac{\sum_{i=1}^n (y_i - \bar{y})^2}{n-1}} \approx 9.55 \][/tex]
Step 4: Calculate the Pearson correlation coefficient
The Pearson correlation coefficient [tex]\( r \)[/tex] is given by:
[tex]\[ r = \frac{\text{cov}(x, y)}{\sigma_x \sigma_y} \][/tex]
Using the covariance and standard deviations calculated:
[tex]\[ r \approx \frac{3.33}{3.21 \times 9.55} \approx 0.109 \][/tex]
Thus, the Pearson correlation coefficient between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is approximately [tex]\( 0.109 \)[/tex].
Conclusion
The Pearson correlation coefficient of 0.109 indicates a very weak positive linear relationship between the variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
Given data:
[tex]\[ \begin{array}{l|rrrrrrr} x & 57 & 53 & 59 & 61 & 53 & 56 & 60 \\ \hline y & 156 & 164 & 163 & 177 & 159 & 175 & 151 \end{array} \][/tex]
Step 1: Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
The mean of [tex]\( x \)[/tex]:
[tex]\[ \bar{x} = \frac{\sum_{i=1}^n x_i}{n} = \frac{57 + 53 + 59 + 61 + 53 + 56 + 60}{7} = 57.0 \][/tex]
The mean of [tex]\( y \)[/tex]:
[tex]\[ \bar{y} = \frac{\sum_{i=1}^n y_i}{n} = \frac{156 + 164 + 163 + 177 + 159 + 175 + 151}{7} \approx 163.57 \][/tex]
Step 2: Calculate the covariance of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
The covariance formula is:
[tex]\[ \text{cov}(x, y) = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{n-1} \][/tex]
After calculating, we find:
[tex]\[ \text{cov}(x, y) \approx 3.33 \][/tex]
Step 3: Calculate the standard deviations of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
The standard deviation of [tex]\( x \)[/tex]:
[tex]\[ \sigma_x = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}} \approx 3.21 \][/tex]
The standard deviation of [tex]\( y \)[/tex]:
[tex]\[ \sigma_y = \sqrt{\frac{\sum_{i=1}^n (y_i - \bar{y})^2}{n-1}} \approx 9.55 \][/tex]
Step 4: Calculate the Pearson correlation coefficient
The Pearson correlation coefficient [tex]\( r \)[/tex] is given by:
[tex]\[ r = \frac{\text{cov}(x, y)}{\sigma_x \sigma_y} \][/tex]
Using the covariance and standard deviations calculated:
[tex]\[ r \approx \frac{3.33}{3.21 \times 9.55} \approx 0.109 \][/tex]
Thus, the Pearson correlation coefficient between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is approximately [tex]\( 0.109 \)[/tex].
Conclusion
The Pearson correlation coefficient of 0.109 indicates a very weak positive linear relationship between the variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
Thank you for participating in our discussion. We value every contribution. Keep sharing knowledge and helping others find the answers they need. Let's create a dynamic and informative learning environment together. Thank you for choosing IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more solutions.