Get expert advice and community support for all your questions on IDNLearn.com. Discover thorough and trustworthy answers from our community of knowledgeable professionals, tailored to meet your specific needs.

Find the value of the linear correlation coefficient [tex]\( r \)[/tex].

The paired data below consist of the test scores of 6 randomly selected students and the number of hours they studied for the test.

[tex]\[
\begin{array}{c|cccccc}
\text{Hours} & 5 & 10 & 4 & 6 & 10 & 9 \\
\hline
\text{Score} & 64 & 86 & 69 & 86 & 59 & 87
\end{array}
\][/tex]

A. [tex]\( 0.678 \)[/tex]
B. [tex]\( -0.678 \)[/tex]
C. [tex]\( 0.224 \)[/tex]
D. [tex]\( -0.224 \)[/tex]


Sagot :

To find the linear correlation coefficient [tex]\(r\)[/tex] for the given data, follow these steps:

1. List the provided information:
- Hours: [tex]\( [5, 10, 4, 6, 10, 9] \)[/tex]
- Scores: [tex]\( [64, 86, 69, 86, 59, 87] \)[/tex]

2. Calculate the mean of the hours and scores:
[tex]\[ \text{Mean of hours} = \frac{5 + 10 + 4 + 6 + 10 + 9}{6} = \frac{44}{6} = 7.3333 \approx 7.33 \][/tex]
[tex]\[ \text{Mean of scores} = \frac{64 + 86 + 69 + 86 + 59 + 87}{6} = \frac{451}{6} \approx 75.17 \][/tex]

3. Calculate the numerator for the correlation coefficient formula:
[tex]\[ \text{Numerator} = \sum_{i=1}^{6} (x_i - \bar{x})(y_i - \bar{y}) \][/tex]
Where [tex]\( x_i \)[/tex] represents the hours and [tex]\( y_i \)[/tex] represents the scores.

Performing these subtractions and multiplications:
[tex]\[ ((5 - 7.33) \times (64 - 75.17)) + ((10 - 7.33) \times (86 - 75.17)) + ((4 - 7.33) \times (69 - 75.17)) + ((6 - 7.33) \times (86 - 75.17)) + ((10 - 7.33) \times (59 - 75.17)) + ((9 - 7.33) \times (87 - 75.17)) \][/tex]
[tex]\[ = (-2.33 \times -11.17) + (2.67 \times 10.83) + (-3.33 \times -6.17) + (-1.33 \times 10.83) + (2.67 \times -16.17) + (1.67 \times 11.83) \][/tex]
[tex]\[ \approx 26 + 28.90 + 20.57 - 14.40 - 43.22 + 19.85 \][/tex]
[tex]\[ = 37.67 \][/tex]

4. Calculate the denominator for the correlation coefficient formula:
[tex]\[ \text{Denominator} = \sqrt{\left(\sum_{i=1}^{6} (x_i - \bar{x})^2\right) \times \left(\sum_{i=1}^{6} (y_i - \bar{y})^2\right)} \][/tex]
Calculating these terms individually:
[tex]\[ \sum_{i=1}^{6} (x_i - \bar{x})^2 = (5 - 7.33)^2 + (10 - 7.33)^2 + (4 - 7.33)^2 + (6 - 7.33)^2 + (10 - 7.33)^2 + (9 - 7.33)^2 \][/tex]
[tex]\[ = 5.44 + 7.11 + 11.09 + 1.77 + 7.11 + 2.78 = 35.30 \][/tex]
[tex]\[ \sum_{i=1}^{6} (y_i - \bar{y})^2 = (64 - 75.17)^2 + (86 - 75.17)^2 + (69 - 75.17)^2 + (86 - 75.17)^2 + (59 - 75.17)^2 + (87 - 75.17)^2 \][/tex]
[tex]\[ = 124.10 + 117.35 + 38.00 + 117.35 + 261.32 + 139.88 = 797.99 \][/tex]

Then the denominator:
[tex]\[ \text{Denominator} = \sqrt{35.30 \times 797.99} \approx 168.00 \][/tex]

5. Finally, calculate the correlation coefficient [tex]\(r\)[/tex]:
[tex]\[ r = \frac{\text{Numerator}}{\text{Denominator}} = \frac{37.67}{168.00} \approx 0.224 \][/tex]

Thus, the value of the linear correlation coefficient [tex]\(r\)[/tex] is approximately 0.224. Therefore, the correct answer is:
[tex]\[ \boxed{0.224} \][/tex]