IDNLearn.com provides a user-friendly platform for finding answers to your questions. Discover the information you need quickly and easily with our reliable and thorough Q&A platform.
Sagot :
Certainly! Let's work through finding the critical points, domain endpoints, and local extreme values for the function:
[tex]\[ y = 5x \sqrt{64 - x^2} \][/tex]
Step 1: Determine the domain.
The expression inside the square root, [tex]\( 64 - x^2 \)[/tex], must be non-negative for the function to be real:
[tex]\[ 64 - x^2 \geq 0 \][/tex]
[tex]\[ x^2 \leq 64 \][/tex]
[tex]\[ -8 \leq x \leq 8 \][/tex]
So, the domain is [tex]\([-8, 8]\)[/tex].
Step 2: Find the critical points.
To find the critical points, we need to take the derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex] and set it equal to zero.
[tex]\[ y = 5x \sqrt{64 - x^2} \][/tex]
Using the product rule and the chain rule, the derivative [tex]\( \frac{dy}{dx} \)[/tex] is found to be:
[tex]\[ \frac{dy}{dx} = 5 \sqrt{64 - x^2} + 5x \cdot \frac{-x}{\sqrt{64 - x^2}} \][/tex]
Simplifying:
[tex]\[ \frac{dy}{dx} = 5 \sqrt{64 - x^2} - \frac{5x^2}{\sqrt{64 - x^2}} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{5(64 - x^2) - 5x^2}{\sqrt{64 - x^2}} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{320 - 10x^2}{\sqrt{64 - x^2}} \][/tex]
Setting [tex]\( \frac{dy}{dx} = 0 \)[/tex]:
[tex]\[ 320 - 10x^2 = 0 \][/tex]
[tex]\[ 10x^2 = 320 \][/tex]
[tex]\[ x^2 = 32 \][/tex]
[tex]\[ x = \pm 4\sqrt{2} \][/tex]
So, the critical points are [tex]\( x = -4\sqrt{2} \)[/tex] and [tex]\( x = 4\sqrt{2} \)[/tex].
Step 3: Evaluate the function at the critical points and endpoints.
We now evaluate the original function [tex]\( y \)[/tex] at the critical points and the endpoints of the domain [tex]\( [-8, 8] \)[/tex].
For [tex]\( x = -4\sqrt{2} \)[/tex]:
[tex]\[ y(-4\sqrt{2}) = 5 \cdot (-4\sqrt{2}) \cdot \sqrt{64 - (-4\sqrt{2})^2} \][/tex]
[tex]\[ y(-4\sqrt{2}) = 5 \cdot (-4\sqrt{2}) \cdot \sqrt{64 - 32} \][/tex]
[tex]\[ y(-4\sqrt{2}) = 5 \cdot (-4\sqrt{2}) \cdot \sqrt{32} \][/tex]
[tex]\[ y(-4\sqrt{2}) = 5 \cdot (-4\sqrt{2}) \cdot 4\sqrt{2} \][/tex]
[tex]\[ y(-4\sqrt{2}) = 5 \cdot (-4\sqrt{2}) \cdot 4\sqrt{2} = -5 \cdot 16 \cdot 2 = -160 \][/tex]
For [tex]\( x = 4\sqrt{2} \)[/tex]:
[tex]\[ y(4\sqrt{2}) = 5 \cdot (4\sqrt{2}) \cdot \sqrt{64 - (4\sqrt{2})^2} \][/tex]
[tex]\[ y(4\sqrt{2}) = 5 \cdot (4\sqrt{2}) \cdot \sqrt{64 - 32} \][/tex]
[tex]\[ y(4\sqrt{2}) = 5 \cdot (4\sqrt{2}) \cdot \sqrt{32} \][/tex]
[tex]\[ y(4\sqrt{2}) = 5 \cdot (4\sqrt{2}) \cdot 4\sqrt{2} \][/tex]
[tex]\[ y(4\sqrt{2}) = 5 \cdot 16 \cdot 2 = 160 \][/tex]
For [tex]\( x = -8 \)[/tex]:
[tex]\[ y(-8) = 5 \cdot (-8) \cdot \sqrt{64 - (-8)^2} \][/tex]
[tex]\[ y(-8) = 5 \cdot (-8) \cdot \sqrt{64 - 64} \][/tex]
[tex]\[ y(-8) = 5 \cdot (-8) \cdot \sqrt{0} = 0 \][/tex]
For [tex]\( x = 8 \)[/tex]:
[tex]\[ y(8) = 5 \cdot 8 \cdot \sqrt{64 - 8^2} \][/tex]
[tex]\[ y(8) = 5 \cdot 8 \cdot \sqrt{64 - 64} \][/tex]
[tex]\[ y(8) = 5 \cdot 8 \cdot \sqrt{0} = 0 \][/tex]
Step 4: Identify local extrema.
From the evaluations, we have:
[tex]\[ (-4\sqrt{2}, -160), \quad (4\sqrt{2}, 160), \quad (-8, 0), \quad (8, 0) \][/tex]
Comparing the function values, we find that the local maximum value is [tex]\( 160 \)[/tex] at [tex]\( x = 4\sqrt{2} \)[/tex]. Therefore, the local maxima occurs at the point [tex]\( (4\sqrt{2}, 160) \)[/tex].
Conclusion:
From the critical points and domain endpoints, the point corresponding to the local maxima is:
[tex]\[ \boxed{(4\sqrt{2}, 160)} \][/tex]
Choosing the correct option:
A. The point(s) corresponding to the local maxima is/are [tex]\(\boxed{(4\sqrt{2}, 160)}\)[/tex]
Option B is incorrect since there are points corresponding to the local maxima.
[tex]\[ y = 5x \sqrt{64 - x^2} \][/tex]
Step 1: Determine the domain.
The expression inside the square root, [tex]\( 64 - x^2 \)[/tex], must be non-negative for the function to be real:
[tex]\[ 64 - x^2 \geq 0 \][/tex]
[tex]\[ x^2 \leq 64 \][/tex]
[tex]\[ -8 \leq x \leq 8 \][/tex]
So, the domain is [tex]\([-8, 8]\)[/tex].
Step 2: Find the critical points.
To find the critical points, we need to take the derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex] and set it equal to zero.
[tex]\[ y = 5x \sqrt{64 - x^2} \][/tex]
Using the product rule and the chain rule, the derivative [tex]\( \frac{dy}{dx} \)[/tex] is found to be:
[tex]\[ \frac{dy}{dx} = 5 \sqrt{64 - x^2} + 5x \cdot \frac{-x}{\sqrt{64 - x^2}} \][/tex]
Simplifying:
[tex]\[ \frac{dy}{dx} = 5 \sqrt{64 - x^2} - \frac{5x^2}{\sqrt{64 - x^2}} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{5(64 - x^2) - 5x^2}{\sqrt{64 - x^2}} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{320 - 10x^2}{\sqrt{64 - x^2}} \][/tex]
Setting [tex]\( \frac{dy}{dx} = 0 \)[/tex]:
[tex]\[ 320 - 10x^2 = 0 \][/tex]
[tex]\[ 10x^2 = 320 \][/tex]
[tex]\[ x^2 = 32 \][/tex]
[tex]\[ x = \pm 4\sqrt{2} \][/tex]
So, the critical points are [tex]\( x = -4\sqrt{2} \)[/tex] and [tex]\( x = 4\sqrt{2} \)[/tex].
Step 3: Evaluate the function at the critical points and endpoints.
We now evaluate the original function [tex]\( y \)[/tex] at the critical points and the endpoints of the domain [tex]\( [-8, 8] \)[/tex].
For [tex]\( x = -4\sqrt{2} \)[/tex]:
[tex]\[ y(-4\sqrt{2}) = 5 \cdot (-4\sqrt{2}) \cdot \sqrt{64 - (-4\sqrt{2})^2} \][/tex]
[tex]\[ y(-4\sqrt{2}) = 5 \cdot (-4\sqrt{2}) \cdot \sqrt{64 - 32} \][/tex]
[tex]\[ y(-4\sqrt{2}) = 5 \cdot (-4\sqrt{2}) \cdot \sqrt{32} \][/tex]
[tex]\[ y(-4\sqrt{2}) = 5 \cdot (-4\sqrt{2}) \cdot 4\sqrt{2} \][/tex]
[tex]\[ y(-4\sqrt{2}) = 5 \cdot (-4\sqrt{2}) \cdot 4\sqrt{2} = -5 \cdot 16 \cdot 2 = -160 \][/tex]
For [tex]\( x = 4\sqrt{2} \)[/tex]:
[tex]\[ y(4\sqrt{2}) = 5 \cdot (4\sqrt{2}) \cdot \sqrt{64 - (4\sqrt{2})^2} \][/tex]
[tex]\[ y(4\sqrt{2}) = 5 \cdot (4\sqrt{2}) \cdot \sqrt{64 - 32} \][/tex]
[tex]\[ y(4\sqrt{2}) = 5 \cdot (4\sqrt{2}) \cdot \sqrt{32} \][/tex]
[tex]\[ y(4\sqrt{2}) = 5 \cdot (4\sqrt{2}) \cdot 4\sqrt{2} \][/tex]
[tex]\[ y(4\sqrt{2}) = 5 \cdot 16 \cdot 2 = 160 \][/tex]
For [tex]\( x = -8 \)[/tex]:
[tex]\[ y(-8) = 5 \cdot (-8) \cdot \sqrt{64 - (-8)^2} \][/tex]
[tex]\[ y(-8) = 5 \cdot (-8) \cdot \sqrt{64 - 64} \][/tex]
[tex]\[ y(-8) = 5 \cdot (-8) \cdot \sqrt{0} = 0 \][/tex]
For [tex]\( x = 8 \)[/tex]:
[tex]\[ y(8) = 5 \cdot 8 \cdot \sqrt{64 - 8^2} \][/tex]
[tex]\[ y(8) = 5 \cdot 8 \cdot \sqrt{64 - 64} \][/tex]
[tex]\[ y(8) = 5 \cdot 8 \cdot \sqrt{0} = 0 \][/tex]
Step 4: Identify local extrema.
From the evaluations, we have:
[tex]\[ (-4\sqrt{2}, -160), \quad (4\sqrt{2}, 160), \quad (-8, 0), \quad (8, 0) \][/tex]
Comparing the function values, we find that the local maximum value is [tex]\( 160 \)[/tex] at [tex]\( x = 4\sqrt{2} \)[/tex]. Therefore, the local maxima occurs at the point [tex]\( (4\sqrt{2}, 160) \)[/tex].
Conclusion:
From the critical points and domain endpoints, the point corresponding to the local maxima is:
[tex]\[ \boxed{(4\sqrt{2}, 160)} \][/tex]
Choosing the correct option:
A. The point(s) corresponding to the local maxima is/are [tex]\(\boxed{(4\sqrt{2}, 160)}\)[/tex]
Option B is incorrect since there are points corresponding to the local maxima.
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.