Join the IDNLearn.com community and get your questions answered by experts. Join our knowledgeable community and access a wealth of reliable answers to your most pressing questions.
Sagot :
Certainly! Let's walk through the process to decide whether the normal sampling distribution can be used and to test the claim about the difference between the two population proportions [tex]\( p_1 \)[/tex] and [tex]\( p_2 \)[/tex] at the significance level [tex]\( \alpha = 0.05 \)[/tex] using the given sample statistics.
### Step 1: Verify Conditions for Normal Approximation
To use the normal distribution, we need to ensure the sample sizes are large enough. Specifically, both [tex]\( np \)[/tex] and [tex]\( n(1-p) \)[/tex] should be greater than 5 for both samples. This is generally assessed using the sample proportions [tex]\( \hat{p}_1 \)[/tex] and [tex]\( \hat{p}_2 \)[/tex].
1. Calculate the sample proportions:
[tex]\[ \hat{p}_1 = \frac{x_1}{n_1} = \frac{65}{141} \approx 0.461 \][/tex]
[tex]\[ \hat{p}_2 = \frac{x_2}{n_2} = \frac{43}{176} \approx 0.244 \][/tex]
2. Check the conditions:
[tex]\[ n_1 \hat{p}_1 = 141 \times 0.461 \approx 65 \][/tex]
[tex]\[ n_1 (1 - \hat{p}_1) = 141 \times (1 - 0.461) \approx 76 \][/tex]
[tex]\[ n_2 \hat{p}_2 = 176 \times 0.244 \approx 43 \][/tex]
[tex]\[ n_2 (1 - \hat{p}_2) = 176 \times (1 - 0.244) \approx 133 \][/tex]
Since all values are greater than 5, the normal approximation is appropriate.
### Step 2: State the Hypotheses
- Null hypothesis [tex]\( H_0 \)[/tex]: [tex]\( p_1 = p_2 \)[/tex]
- Alternative hypothesis [tex]\( H_A \)[/tex]: [tex]\( p_1 \neq p_2 \)[/tex]
### Step 3: Calculate the Pooled Proportion
[tex]\[ \hat{p} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{65 + 43}{141 + 176} = \frac{108}{317} \approx 0.341 \][/tex]
### Step 4: Calculate the Standard Error
[tex]\[ SE = \sqrt{\hat{p} (1 - \hat{p}) \left( \frac{1}{n_1} + \frac{1}{n_2} \right)} = \sqrt{0.341 (1 - 0.341) \left( \frac{1}{141} + \frac{1}{176} \right)} \approx 0.054 \][/tex]
### Step 5: Calculate the Test Statistic (z-score)
[tex]\[ z = \frac{\hat{p}_1 - \hat{p}_2}{SE} = \frac{0.461 - 0.244}{0.054} \approx 4.045 \][/tex]
### Step 6: Calculate the p-value
[tex]\[ \text{p-value} = 2 \times (1 - \text{CDF}(|z|)) \][/tex]
For [tex]\( z = 4.045 \)[/tex], the cumulative distribution function (CDF) value for a standard normal distribution is very close to 1.
[tex]\[ \text{p-value} \approx 2 \times (1 - 0.99997) = 2 \times 0.00003 = 0.00006 \][/tex]
### Step 7: Make a Decision
Compare the p-value to the significance level [tex]\( \alpha = 0.05 \)[/tex].
[tex]\[ 0.00006 < 0.05 \][/tex]
Since the p-value is less than [tex]\( \alpha \)[/tex], we reject the null hypothesis.
### Conclusion
At the [tex]\( 0.05 \)[/tex] significance level, there is sufficient evidence to conclude that the difference between the two population proportions [tex]\( p_1 \)[/tex] and [tex]\( p_2 \)[/tex] is statistically significant. Therefore, we reject the claim that [tex]\( p_1 = p_2 \)[/tex].
### Step 1: Verify Conditions for Normal Approximation
To use the normal distribution, we need to ensure the sample sizes are large enough. Specifically, both [tex]\( np \)[/tex] and [tex]\( n(1-p) \)[/tex] should be greater than 5 for both samples. This is generally assessed using the sample proportions [tex]\( \hat{p}_1 \)[/tex] and [tex]\( \hat{p}_2 \)[/tex].
1. Calculate the sample proportions:
[tex]\[ \hat{p}_1 = \frac{x_1}{n_1} = \frac{65}{141} \approx 0.461 \][/tex]
[tex]\[ \hat{p}_2 = \frac{x_2}{n_2} = \frac{43}{176} \approx 0.244 \][/tex]
2. Check the conditions:
[tex]\[ n_1 \hat{p}_1 = 141 \times 0.461 \approx 65 \][/tex]
[tex]\[ n_1 (1 - \hat{p}_1) = 141 \times (1 - 0.461) \approx 76 \][/tex]
[tex]\[ n_2 \hat{p}_2 = 176 \times 0.244 \approx 43 \][/tex]
[tex]\[ n_2 (1 - \hat{p}_2) = 176 \times (1 - 0.244) \approx 133 \][/tex]
Since all values are greater than 5, the normal approximation is appropriate.
### Step 2: State the Hypotheses
- Null hypothesis [tex]\( H_0 \)[/tex]: [tex]\( p_1 = p_2 \)[/tex]
- Alternative hypothesis [tex]\( H_A \)[/tex]: [tex]\( p_1 \neq p_2 \)[/tex]
### Step 3: Calculate the Pooled Proportion
[tex]\[ \hat{p} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{65 + 43}{141 + 176} = \frac{108}{317} \approx 0.341 \][/tex]
### Step 4: Calculate the Standard Error
[tex]\[ SE = \sqrt{\hat{p} (1 - \hat{p}) \left( \frac{1}{n_1} + \frac{1}{n_2} \right)} = \sqrt{0.341 (1 - 0.341) \left( \frac{1}{141} + \frac{1}{176} \right)} \approx 0.054 \][/tex]
### Step 5: Calculate the Test Statistic (z-score)
[tex]\[ z = \frac{\hat{p}_1 - \hat{p}_2}{SE} = \frac{0.461 - 0.244}{0.054} \approx 4.045 \][/tex]
### Step 6: Calculate the p-value
[tex]\[ \text{p-value} = 2 \times (1 - \text{CDF}(|z|)) \][/tex]
For [tex]\( z = 4.045 \)[/tex], the cumulative distribution function (CDF) value for a standard normal distribution is very close to 1.
[tex]\[ \text{p-value} \approx 2 \times (1 - 0.99997) = 2 \times 0.00003 = 0.00006 \][/tex]
### Step 7: Make a Decision
Compare the p-value to the significance level [tex]\( \alpha = 0.05 \)[/tex].
[tex]\[ 0.00006 < 0.05 \][/tex]
Since the p-value is less than [tex]\( \alpha \)[/tex], we reject the null hypothesis.
### Conclusion
At the [tex]\( 0.05 \)[/tex] significance level, there is sufficient evidence to conclude that the difference between the two population proportions [tex]\( p_1 \)[/tex] and [tex]\( p_2 \)[/tex] is statistically significant. Therefore, we reject the claim that [tex]\( p_1 = p_2 \)[/tex].
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Thank you for choosing IDNLearn.com for your queries. We’re committed to providing accurate answers, so visit us again soon.