IDNLearn.com: Your trusted platform for finding precise and reliable answers. Get step-by-step guidance for all your technical questions from our knowledgeable community members.
Sagot :
To solve this problem, we need to use the combined gas law, which relates the initial and final states of a gas sample without changing the amount of gas. The combined gas law is:
[tex]\[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \][/tex]
where:
- [tex]\( P_1 \)[/tex] and [tex]\( P_2 \)[/tex] are the initial and final pressures, respectively,
- [tex]\( V_1 \)[/tex] and [tex]\( V_2 \)[/tex] are the initial and final volumes, respectively,
- [tex]\( T_1 \)[/tex] and [tex]\( T_2 \)[/tex] are the initial and final temperatures, respectively.
### Step-by-Step Solution
1. Identify the given values:
- Initial volume ([tex]\( V_1 \)[/tex]): 735 mL
- Initial pressure ([tex]\( P_1 \)[/tex]): 1.20 atm
- Initial temperature ([tex]\( T_1 \)[/tex]): [tex]\( 112^{\circ} C \)[/tex]
- Final pressure ([tex]\( P_2 \)[/tex]): 643 mmHg
- Final temperature ([tex]\( T_2 \)[/tex]): 281 K
2. Convert the initial temperature from Celsius to Kelvin:
[tex]\[ T_1 = 112^{\circ} \text{C} = 112 + 273.15 = 385.15 \text{ K} \][/tex]
3. Convert the final pressure from mmHg to atm:
[tex]\[ P_2 = 643 \text{ mmHg} \times \left( \frac{1 \text{ atm}}{760 \text{ mmHg}} \right) = 643 \times \frac{1}{760} \approx 0.84605 \text{ atm} \][/tex]
4. Rearrange the combined gas law to solve for [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = V_1 \times \frac{P_1}{P_2} \times \frac{T_2}{T_1} \][/tex]
5. Substitute the known values into the formula:
[tex]\[ V_2 = 735 \text{ mL} \times \frac{1.20 \text{ atm}}{0.84605 \text{ atm}} \times \frac{281 \text{ K}}{385.15 \text{ K}} \][/tex]
6. Calculate [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = 735 \times \frac{1.20}{0.84605} \times \frac{281}{385.15} \][/tex]
7. First, calculate the pressure ratio:
[tex]\[ \frac{1.20}{0.84605} \approx 1.4171 \][/tex]
8. Next, calculate the temperature ratio:
[tex]\[ \frac{281}{385.15} \approx 0.7296 \][/tex]
9. Now, combine these ratios and multiply by the initial volume:
[tex]\[ V_2 = 735 \times 1.4171 \times 0.7296 \approx 760.58 \text{ mL} \][/tex]
Final Result:
The final volume of the gas, when the pressure is 643 mmHg and the temperature is 281 K, is approximately:
[tex]\[ V = 760.58 \text{ mL} \][/tex]
[tex]\[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \][/tex]
where:
- [tex]\( P_1 \)[/tex] and [tex]\( P_2 \)[/tex] are the initial and final pressures, respectively,
- [tex]\( V_1 \)[/tex] and [tex]\( V_2 \)[/tex] are the initial and final volumes, respectively,
- [tex]\( T_1 \)[/tex] and [tex]\( T_2 \)[/tex] are the initial and final temperatures, respectively.
### Step-by-Step Solution
1. Identify the given values:
- Initial volume ([tex]\( V_1 \)[/tex]): 735 mL
- Initial pressure ([tex]\( P_1 \)[/tex]): 1.20 atm
- Initial temperature ([tex]\( T_1 \)[/tex]): [tex]\( 112^{\circ} C \)[/tex]
- Final pressure ([tex]\( P_2 \)[/tex]): 643 mmHg
- Final temperature ([tex]\( T_2 \)[/tex]): 281 K
2. Convert the initial temperature from Celsius to Kelvin:
[tex]\[ T_1 = 112^{\circ} \text{C} = 112 + 273.15 = 385.15 \text{ K} \][/tex]
3. Convert the final pressure from mmHg to atm:
[tex]\[ P_2 = 643 \text{ mmHg} \times \left( \frac{1 \text{ atm}}{760 \text{ mmHg}} \right) = 643 \times \frac{1}{760} \approx 0.84605 \text{ atm} \][/tex]
4. Rearrange the combined gas law to solve for [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = V_1 \times \frac{P_1}{P_2} \times \frac{T_2}{T_1} \][/tex]
5. Substitute the known values into the formula:
[tex]\[ V_2 = 735 \text{ mL} \times \frac{1.20 \text{ atm}}{0.84605 \text{ atm}} \times \frac{281 \text{ K}}{385.15 \text{ K}} \][/tex]
6. Calculate [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = 735 \times \frac{1.20}{0.84605} \times \frac{281}{385.15} \][/tex]
7. First, calculate the pressure ratio:
[tex]\[ \frac{1.20}{0.84605} \approx 1.4171 \][/tex]
8. Next, calculate the temperature ratio:
[tex]\[ \frac{281}{385.15} \approx 0.7296 \][/tex]
9. Now, combine these ratios and multiply by the initial volume:
[tex]\[ V_2 = 735 \times 1.4171 \times 0.7296 \approx 760.58 \text{ mL} \][/tex]
Final Result:
The final volume of the gas, when the pressure is 643 mmHg and the temperature is 281 K, is approximately:
[tex]\[ V = 760.58 \text{ mL} \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Thank you for visiting IDNLearn.com. We’re here to provide clear and concise answers, so visit us again soon.