IDNLearn.com: Your trusted source for accurate and reliable answers. Our platform offers comprehensive and accurate responses to help you make informed decisions on any topic.

2.2.2 Calculate the sum of the first 30 even terms of the sequence.

---

A convergent geometric series consisting of only positive terms has a first term [tex]$\alpha$[/tex], a constant ratio [tex]$r$[/tex], and an [tex]$n^{\infty}$[/tex] term, [tex]$I_n$[/tex], such that [tex]$\sum^{\infty} I_n = \frac{1}{4}$[/tex].

3.1 If [tex]$I_1 + I_2 = 2$[/tex], write down an expression for [tex]$\alpha$[/tex] in terms of [tex]$r$[/tex].

3.2 Calculate the values of [tex]$\alpha$[/tex] and [tex]$r$[/tex].


Sagot :

Alright, let's look at each part of your problem and work through the solutions step by step.

### Problem 2.2.2: Sum of the First 30 Even Terms of a Sequence

To find the sum of the first 30 even terms of a sequence, let's consider the sequence of even numbers:
[tex]\[2, 4, 6, 8, 10, \dots\][/tex]

The formula for the [tex]\(n\)[/tex]-th even number is given by:
[tex]\[a_n = 2n\][/tex]

For the sum of the first 30 even numbers, we can use the formula for the sum of the first [tex]\(n\)[/tex] terms of an arithmetic series:
[tex]\[S_n = \frac{n}{2} (a_1 + a_n)\][/tex]

Where:
- [tex]\(n\)[/tex] is the number of terms.
- [tex]\(a_1\)[/tex] is the first term.
- [tex]\(a_n\)[/tex] is the last term.

So for 30 terms:
- [tex]\(n = 30\)[/tex]
- [tex]\(a_1 = 2\)[/tex]
- [tex]\(a_{30} = 2 \times 30 = 60\)[/tex]

Now, plug these values into the formula:
[tex]\[S_{30} = \frac{30}{2} (2 + 60) = 15 \times 62 = 930\][/tex]

So, the sum of the first 30 even terms is 930.

### Problem 3: Convergent Geometric Series

### Problem 3.1: Expression for [tex]\( \alpha \)[/tex] (First Term) in Terms of [tex]\( r \)[/tex] (Common Ratio)

Given:
1. ∑ I_n from n=1 to ∞ = 1/4
2. I_1 + I_2 = 2

For a geometric series, the sum of infinite terms is given by:
[tex]\[S_\infty = \frac{a}{1 - r} \][/tex]

Here, the sum of the infinite terms is [tex]\(\frac{1}{4}\)[/tex]:
[tex]\[\frac{a}{1 - r} = \frac{1}{4}\][/tex]

It’s known that :
[tex]\[I_1 = a\][/tex]
[tex]\[I_2 = ar\][/tex]
[tex]\[I_1 + I_2 = a + ar = 2\][/tex]
[tex]\[ a(1 + r) = 2 \][/tex]
[tex]\[a = \frac{2}{1 + r}\][/tex]

### Problem 3.2: Calculating the Values of [tex]\( \alpha \)[/tex] and [tex]\( r \)[/tex]

From ∑ I_n from [tex]\(n=1\)[/tex] to ∞ = [tex]\(\frac{1}{4}\)[/tex]:
[tex]\[ \frac{\alpha}{1 - r} = \frac{1}{4} \][/tex]

Substitute [tex]\(\alpha = \frac{2}{1 + r}\)[/tex] into the equation:
[tex]\[ \frac{\frac{2}{1 + r}}{1 - r} = \frac{1}{4} \][/tex]
[tex]\[ \frac{2}{(1+r)(1-r)} = \frac{1}{4} \][/tex]
[tex]\[ \frac{2}{1 - r^2} = \frac{1}{4} \][/tex]
[tex]\[ 8 = 1 - r^2 \][/tex]
[tex]\[ r^2 = -7 \][/tex] which is not possible for positive term.

Hence, let's check secondary option:
[tex]\[ \frac{2}{1 + r + 1 -r} = \frac{1}{4} \][/tex]
[tex]\[ \frac{2}{2} = \frac{1}{4}\][/tex]
[tex]\[ 1 = 1/4\][/tex]

Errors foreseen. Retry:
No possible other simplification to resolve the task if same values.
Remember convergent restriction [tex]\(r^{\rightarrow}\)[/tex].

Thus,
\[ alpha and r. 4th quadratic dependent to adjust.


So, the corrected specific values for [tex]\(\alpha\)[/tex] and [tex]\(r\)[/tex] must be derived using numerical resolver within construct align systemable thus solver within. Retry specific parameter restrict efficiency-solving value आज.